About Mass Spec (no date). Available at: https://www.asms.org/about-mass-spectrometry.
Aebersold, R. (2008) ‘Quantitative Proteomics’. Available at: https://hstalks.com/t/949/quantitative-proteomics/.
Aebersold, R. and Mann, M. (2003a) ‘Mass Spectrometry-Based Proteomics’, Nature, 422(6928), pp. 198–207. Available at: https://doi.org/10.1038/nature01511.
Aebersold, R. and Mann, M. (2003b) ‘Mass Spectrometry-Based Proteomics’, Nature, 422(6928), pp. 198–207. Available at: https://doi.org/10.1038/nature01511.
Aebersold, R. and Mann, M. (2003c) ‘Mass Spectrometry-Based Proteomics’, Nature, 422(6928), pp. 198–207. Available at: https://doi.org/10.1038/nature01511.
Aebersold, R. and Mann, M. (2003d) ‘Mass Spectrometry-Based Proteomics’, Nature, 422(6928), pp. 198–207. Available at: https://doi.org/10.1038/nature01511.
Ahn, N.G. et al. (2007) ‘Achieving In-Depth Proteomics Profiling by Mass Spectrometry’, ACS Chemical Biology, 2(1), pp. 39–52. Available at: https://doi.org/10.1021/cb600357d.
Ahrens, C.H., Brunner, E. and al, E. (2010) ‘Generating and Navigating Proteome Maps Using Mass Spectrometry’, Nature Reviews Molecular Cell Biology, 11(11), pp. 789–801. Available at: https://doi.org/10.1038/nrm2973.
Aloy, P. and Russell, R.B. (2005a) ‘Structure-Based Systems Biology: A Zoom Lens for the Cell’, FEBS Letters, 579(8), pp. 1854–1858. Available at: https://doi.org/10.1016/j.febslet.2005.02.014.
Aloy, P. and Russell, R.B. (2005b) ‘Structure-Based Systems Biology: A Zoom Lens for the Cell’, FEBS Letters, 579(8), pp. 1854–1858. Available at: https://doi.org/10.1016/j.febslet.2005.02.014.
Altschul, S.F. et al. (1994) ‘Issues in Searching Molecular Sequence Databases’, Nature Genetics, 6(2), pp. 119–129.
Amaral, A.J. and Megens, H.-J. (2009) ‘Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome’, BMC Genomics, 10(1). Available at: https://doi.org/10.1186/1471-2164-10-374.
Ansong, C. and Purvine, S.O. (2008a) ‘Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation’, Briefings in Functional Genomics and Proteomics, 7(1), pp. 50–62. Available at: https://doi.org/10.1093/bfgp/eln010.
Ansong, C. and Purvine, S.O. (2008b) ‘Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation’, Briefings in Functional Genomics and Proteomics, 7(1), pp. 50–62. Available at: https://doi.org/10.1093/bfgp/eln010.
Apweiler, R. and Attwood, T.K. (2001) ‘The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites’, Nucleic Acids Research, 29(1), pp. 37–40. Available at: https://doi.org/10.1093/nar/29.1.37.
Ashcroft, D.A.E. (no date) An Introduction to Mass Spectrometry. Available at: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm.
Baker, D. and Sali, A. (2001) ‘Protein Structure Prediction and Structural Genomics’, Science, 294(5540), pp. 93–96. Available at: https://doi.org/10.1126/science.1065659.
Balog, J. and Sasi-Szabo, L. (2013) ‘Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry’, Science Translational Medicine, 5(194), pp. 194ra93-194ra93. Available at: https://doi.org/10.1126/scitranslmed.3005623.
Bantscheff, M., Schirle, M. and al, E. (2007) ‘Quantitative Mass Spectrometry in Proteomics: A Critical Review’, Analytical and Bioanalytical Chemistry, 389(4), pp. 1017–1031. Available at: https://doi.org/10.1007/s00216-007-1486-6.
Benschop, J.J. and Mohammed, S. (2007) ‘Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis’, Molecular & Cellular Proteomics : Mcp, 6(7), pp. 1198–1214. Available at: https://doi.org/10.1074/mcp.M600429-MCP200.
Bindschedler, L.V. and Cramer, R. (2011a) ‘Quantitative Plant Proteomics’, Proteomics, 11(4), pp. 756–775. Available at: https://doi.org/10.1002/pmic.201000426.
Bindschedler, L.V. and Cramer, R. (2011b) ‘Quantitative Plant Proteomics’, Proteomics, 11(4), pp. 756–775. Available at: https://doi.org/10.1002/pmic.201000426.
Bisson, N. and James, D.A. (2011) ‘Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor’, Nature Biotechnology, 29(7), pp. 653–658. Available at: https://doi.org/10.1038/nbt.1905.
Boersema, P.J., Kahraman, A. and Picotti, P. (2015) ‘Proteomics Beyond Large-Scale Protein Expression Analysis’, Current Opinion in Biotechnology, 34, pp. 162–170. Available at: https://doi.org/10.1016/j.copbio.2015.01.005.
Bork, P. and Jensen, L.J. (2004a) ‘Protein Interaction Networks From Yeast to Human’, Current Opinion in Structural Biology, 14(3), pp. 292–299. Available at: https://doi.org/10.1016/j.sbi.2004.05.003.
Bork, P. and Jensen, L.J. (2004b) ‘Protein Interaction Networks From Yeast to Human’, Current Opinion in Structural Biology, 14(3), pp. 292–299. Available at: https://doi.org/10.1016/j.sbi.2004.05.003.
Brazma, A. and Sarkans, U. (2007) ‘Gene Expression Databases’. Available at: https://doi.org/10.1002/9780470015902.a0005248.pub2.
Bruggeman, F.J. and Westerhoff, H.V. (2007a) ‘The Nature of Systems Biology’, Trends in Microbiology, 15(1), pp. 45–50. Available at: https://doi.org/10.1016/j.tim.2006.11.003.
Bruggeman, F.J. and Westerhoff, H.V. (2007b) ‘The Nature of Systems Biology’, Trends in Microbiology, 15(1), pp. 45–50. Available at: https://doi.org/10.1016/j.tim.2006.11.003.
Canas, B. (2006a) ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, 4(4), pp. 295–320. Available at: https://doi.org/10.1093/bfgp/eli002.
Canas, B. (2006b) ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, 4(4), pp. 295–320. Available at: https://doi.org/10.1093/bfgp/eli002.
Canas, B. (2006c) ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, 4(4), pp. 295–320. Available at: https://doi.org/10.1093/bfgp/eli002.
Canas, B. (2006d) ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, 4(4), pp. 295–320. Available at: https://doi.org/10.1093/bfgp/eli002.
Center for Metabolomics and Mass Spectrometry | Scripps Research (no date). Available at: https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html.
Chen, X. and Sun, L. (2007a) ‘Amino Acid-Coded Tagging Approaches in Quantitative Proteomics’, Expert Review of Proteomics, 4(1), pp. 25–37. Available at: https://doi.org/10.1586/14789450.4.1.25.
Chen, X. and Sun, L. (2007b) ‘Amino Acid-Coded Tagging Approaches in Quantitative Proteomics’, Expert Review of Proteomics, 4(1), pp. 25–37. Available at: https://doi.org/10.1586/14789450.4.1.25.
Choudhary, C. and Mann, M. (2010a) ‘Decoding Signalling Networks by Mass Spectrometry-Based Proteomics’, Nature Reviews Molecular Cell Biology, 11(6), pp. 427–439. Available at: https://doi.org/10.1038/nrm2900.
Choudhary, C. and Mann, M. (2010b) ‘Decoding Signalling Networks by Mass Spectrometry-Based Proteomics’, Nature Reviews Molecular Cell Biology, 11(6), pp. 427–439. Available at: https://doi.org/10.1038/nrm2900.
Coombs, K.M. and Berard, A. (2010a) ‘Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells’, Journal Of Virology, 84(20), pp. 10888–10906. Available at: https://doi.org/10.1128/JVI.00431-10.
Coombs, K.M. and Berard, A. (2010b) ‘Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells’, Journal Of Virology, 84(20), pp. 10888–10906. Available at: https://doi.org/10.1128/JVI.00431-10.
Cox, J. and Mann, M. (2007a) ‘Is Proteomics the New Genomics?’, Cell, 130(3), pp. 395–398. Available at: https://doi.org/10.1016/j.cell.2007.07.032.
Cox, J. and Mann, M. (2007b) ‘Is Proteomics the New Genomics?’, Cell, 130(3), pp. 395–398. Available at: https://doi.org/10.1016/j.cell.2007.07.032.
Cox, J. and Mann, M. (2011a) ‘Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology’, Annual Review of Biochemistry, 80(1), pp. 273–299. Available at: https://doi.org/10.1146/annurev-biochem-061308-093216.
Cox, J. and Mann, M. (2011b) ‘Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology’, Annual Review of Biochemistry, 80(1), pp. 273–299. Available at: https://doi.org/10.1146/annurev-biochem-061308-093216.
Cravatt, B.F., Simon, G.M. and Yates III, J.R. (2007a) ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, 450(7172), pp. 991–1000. Available at: https://doi.org/10.1038/nature06525.
Cravatt, B.F., Simon, G.M. and Yates III, J.R. (2007b) ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, 450(7172), pp. 991–1000. Available at: https://doi.org/10.1038/nature06525.
Cravatt, B.F., Simon, G.M. and Yates III, J.R. (2007c) ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, 450(7172), pp. 991–1000. Available at: https://doi.org/10.1038/nature06525.
Cravatt, B.F., Simon, G.M. and Yates III, J.R. (2007d) ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, 450(7172), pp. 991–1000. Available at: https://doi.org/10.1038/nature06525.
Cravatt, B.F., Simon, G.M. and Yates III, J.R. (2007e) ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, 450(7172), pp. 991–1000. Available at: https://doi.org/10.1038/nature06525.
Danial, N.N., Gramm, C.F. and al, E. (2003) ‘BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis’, Nature, 424(6951), pp. 952–956. Available at: https://doi.org/10.1038/nature01825.
Devoto, A. and Turner, J.G. (2005a) ‘Jasmonate-Regulated Arabidopsis Stress Signalling Network’, Physiologia Plantarum, 123(2), pp. 161–172. Available at: https://doi.org/10.1111/j.1399-3054.2004.00418.x.
Devoto, A. and Turner, J.G. (2005b) ‘Jasmonate-Regulated Arabidopsis Stress Signalling Network’, Physiologia Plantarum, 123(2), pp. 161–172. Available at: https://doi.org/10.1111/j.1399-3054.2004.00418.x.
Domon, B. and Aebersold, R. (2006a) ‘Mass Spectrometry and Protein Analysis’, Science, 312(5771), pp. 212–217. Available at: https://doi.org/10.1126/science.1124619.
Domon, B. and Aebersold, R. (2006b) ‘Mass Spectrometry and Protein Analysis’, Science, 312(5771), pp. 212–217. Available at: https://doi.org/10.1126/science.1124619.
Domon, B. and Aebersold, R. (2006c) ‘Mass Spectrometry and Protein Analysis’, Science, 312(5771), pp. 212–217. Available at: https://doi.org/10.1126/science.1124619.
Domon, B. and Aebersold, R. (2010a) ‘Options and Considerations When Selecting a Quantitative Proteomics Strategy’, Nature Biotechnology, 28(7), pp. 710–721. Available at: https://doi.org/10.1038/nbt.1661.
Domon, B. and Aebersold, R. (2010b) ‘Options and Considerations When Selecting a Quantitative Proteomics Strategy’, Nature Biotechnology, 28(7), pp. 710–721. Available at: https://doi.org/10.1038/nbt.1661.
Domon, B. and Aebersold, R. (2010c) ‘Options and Considerations When Selecting a Quantitative Proteomics Strategy’, Nature Biotechnology, 28(7), pp. 710–721. Available at: https://doi.org/10.1038/nbt.1661.
E. Nicolas, F. et al. (2011) ‘Silencing Human Cancer: Identification and Uses of MicroRNAs’, Recent Patents on Anti-Cancer Drug Discovery, 6(1), pp. 94–105. Available at: https://doi.org/10.2174/157489211793980033.
Eamens, A. and Wang, M.-B. (2008) ‘RNA Silencing in Plants: Yesterday, Today, and Tomorrow’, Plant Physiology, 147(2), pp. 456–468. Available at: http://www.jstor.org/stable/40066045.
Ebhardt, H.A. et al. (2015) ‘Applications of Targeted Proteomics in Systems Biology and Translational Medicine’, Proteomics, 15(18), pp. 3193–3208. Available at: https://doi.org/10.1002/pmic.201500004.
Engholm-Keller, K. and Birck, P. (2012) ‘TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC’, Journal of Proteomics, 75(18), pp. 5749–5761. Available at: https://doi.org/10.1016/j.jprot.2012.08.007.
Engholm-Keller, K. and Larsen, M.R. (2013) ‘Technologies and Challenges in Large-Scale Phosphoproteomics’, Proteomics, 13(6), pp. 910–931. Available at: https://doi.org/10.1002/pmic.201200484.
Foster, L.J., De Hoog, C.L. and Mann, M. (2003) ‘Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors’, Proceedings Of The National Academy Of Sciences Of The United States Of America, 100(10), pp. 5813–5818. Available at: http://www.jstor.org/stable/3147499.
Foster, L.J. and de Hoog, C.L. (2006a) ‘A Mammalian Organelle Map by Protein Correlation Profiling’, Cell, 125(1), pp. 187–199. Available at: https://doi.org/10.1016/j.cell.2006.03.022.
Foster, L.J. and de Hoog, C.L. (2006b) ‘A Mammalian Organelle Map by Protein Correlation Profiling’, Cell, 125(1), pp. 187–199. Available at: https://doi.org/10.1016/j.cell.2006.03.022.
Gary Siuzdak (2003a) The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr.
Gary Siuzdak (2003b) The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr.
Gehring, W.J. and Ikeo, K. (1999a) ‘Pax 6: Mastering Eye Morphogenesis and Eye Evolution’, Trends in Genetics, 15(9), pp. 371–377. Available at: https://doi.org/10.1016/S0168-9525(99)01776-X.
Gehring, W.J. and Ikeo, K. (1999b) ‘Pax 6: Mastering Eye Morphogenesis and Eye Evolution’, Trends in Genetics, 15(9), pp. 371–377. Available at: https://doi.org/10.1016/S0168-9525(99)01776-X.
Geiger, T. and Cox, J. (2010) ‘Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue’, Nature Methods, 7(5), pp. 383–385. Available at: https://doi.org/10.1038/nmeth.1446.
Geiger, T. and Wehner, A. (2012a) ‘Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins’, Molecular & Cellular Proteomics, 11(3). Available at: https://doi.org/10.1074/mcp.M111.014050.
Geiger, T. and Wehner, A. (2012b) ‘Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins’, Molecular & Cellular Proteomics, 11(3). Available at: https://doi.org/10.1074/mcp.M111.014050.
‘Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals’ (1996) Biological Chemistry Hoppe-Seyler, 377(10), pp. 605–618. Available at: https://doi.org/10.1515/bchm3.1996.377.10.605.
Goldsmith-Fischman, S. and Honig, B. (2003) ‘Structural Genomics: Computational Methods for Structure Analysis’, Protein Science, 12(9), pp. 1813–1821. Available at: https://doi.org/10.1110/ps.0242903.
Goljanek-Whysall, K. and Sweetman, D. (2011) ‘Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology)’, Proceedings of the National Academy of Sciences of the United States, 108(29), pp. 11936–11941. Available at: http://www.jstor.org/stable/27978927.
Gstaiger, M. and Aebersold, R. (2009a) ‘Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology’, Nature Reviews Genetics, 10(9), pp. 617–627. Available at: https://doi.org/10.1038/nrg2633.
Gstaiger, M. and Aebersold, R. (2009b) ‘Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology’, Nature Reviews Genetics, 10(9), pp. 617–627. Available at: https://doi.org/10.1038/nrg2633.
Han, X., Aslanian, A. and Yates, J.R. (2008a) ‘Mass Spectrometry for Proteomics’, Current Opinion in Chemical Biology, 12(5), pp. 483–490. Available at: https://doi.org/10.1016/j.cbpa.2008.07.024.
Han, X., Aslanian, A. and Yates, J.R. (2008b) ‘Mass Spectrometry for Proteomics’, Current Opinion in Chemical Biology, 12(5), pp. 483–490. Available at: https://doi.org/10.1016/j.cbpa.2008.07.024.
Hannon, G.J. (2002) ‘RNA Interference’, Nature, 418(6894), pp. 244–251. Available at: https://doi.org/10.1038/418244a.
Harbison, C.T., Gordon, D.B. and Young, R.A. (2004a) ‘Transcriptional Regulatory Code of a Eukaryotic Genome’, Nature, 431(7004), pp. 99–104. Available at: https://doi.org/10.1038/nature02800.
Harbison, C.T., Gordon, D.B. and Young, R.A. (2004b) ‘Transcriptional Regulatory Code of a Eukaryotic Genome’, Nature, 431(7004), pp. 99–104. Available at: https://doi.org/10.1038/nature02800.
Hughes, T.R. and Marton, M.J. (2000) ‘Functional Discovery via a Compendium of Expression Profiles’, Cell, 102(1), pp. 109–126. Available at: https://doi.org/10.1016/S0092-8674(00)00015-5.
Ideker, T., Galitski, T. and Hood, L. (2001a) ‘A New Approach to Decoding Life: Systems Biology’, Annual Review of Genomics and Human Genetics, 2(1), pp. 343–372. Available at: https://doi.org/10.1146/annurev.genom.2.1.343.
Ideker, T., Galitski, T. and Hood, L. (2001b) ‘A New Approach to Decoding Life: Systems Biology’, Annual Review of Genomics and Human Genetics, 2(1), pp. 343–372. Available at: https://doi.org/10.1146/annurev.genom.2.1.343.
Jacque, J.-M., Triques, K. and Stevenson, M. (2002) ‘Modulation of HIV-1 Replication by RNA Interference’, Nature, 418(6896), pp. 435–438. Available at: https://doi.org/10.1038/nature00896.
Jen, C.-H. and Manfield, I.W. (2006a) ‘The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis’, The Plant Journal, 46(2), pp. 336–348. Available at: https://doi.org/10.1111/j.1365-313X.2006.02681.x.
Jen, C.-H. and Manfield, I.W. (2006b) ‘The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis’, The Plant Journal, 46(2), pp. 336–348. Available at: https://doi.org/10.1111/j.1365-313X.2006.02681.x.
Jensen, L.J. and Kuhn, M. (2009a) ‘STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms’, Nucleic Acids Research, 37(Database), pp. D412–D416. Available at: https://doi.org/10.1093/nar/gkn760.
Jensen, L.J. and Kuhn, M. (2009b) ‘STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms’, Nucleic Acids Research, 37(Database), pp. D412–D416. Available at: https://doi.org/10.1093/nar/gkn760.
Johnson, D.S. et al. (2007) ‘Genome-Wide Mapping of in Vivo Protein-DNA Interactions’, Science (New York, N.Y.), 316(5830), pp. 1497–1502. Available at: https://doi.org/10.1126/science.1141319.
Jung, J.W. and Lee, W. (2004) ‘Structure-Based Functional Discovery of Proteins: Structural Proteomics’, Journal of Biochemistry and Molecular Biology, 37(1), pp. 28–34.
Katoh, M. and Kato, M. (2003) ‘Comparative Genomics between Drosophila and Human [open access]’, Genome Informatics, 14, pp. 587–588. Available at: http://www.jsbi.org/pdfs/journal1/GIW03/GIW03P190.pdf.
Keck, J.M. and Jones, M.H. (2011) ‘A Cell Cycle Phosphoproteome of the Yeast Centrosome’, Science, 332(6037), pp. 1557–1561. Available at: https://doi.org/10.1126/science.1205193.
Kitano, H. (2002) ‘Computational Systems Biology’, Nature, 420(6912), pp. 206–210. Available at: https://doi.org/10.1038/nature01254.
Knight, H. and Knight, M.R. (2001a) ‘Abiotic Stress Signalling Pathways: Specificity and Cross-Talk’, Trends in Plant Science, 6(6), pp. 262–267. Available at: https://doi.org/10.1016/S1360-1385(01)01946-X.
Knight, H. and Knight, M.R. (2001b) ‘Abiotic Stress Signalling Pathways: Specificity and Cross-Talk’, Trends in Plant Science, 6(6), pp. 262–267. Available at: https://doi.org/10.1016/S1360-1385(01)01946-X.
Krogan, N.J. and Cagney, G. (2006a) ‘Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae’, Nature, 440(7084), pp. 637–643. Available at: https://doi.org/10.1038/nature04670.
Krogan, N.J. and Cagney, G. (2006b) ‘Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae’, Nature, 440(7084), pp. 637–643. Available at: https://doi.org/10.1038/nature04670.
Larance, M. and Lamond, A.I. (2015) ‘Multidimensional Proteomics for Cell Biology’, Nature Reviews Molecular Cell Biology, 16(5), pp. 269–280. Available at: https://doi.org/10.1038/nrm3970.
Latchman, D.S. (2005a) ‘Transcriptional Gene Regulation in Eukaryotes’. Available at: https://doi.org/10.1002/9780470015902.a0002322.pub2.
Latchman, D.S. (2005b) ‘Transcriptional Gene Regulation in Eukaryotes’. Available at: https://doi.org/10.1002/9780470015902.a0002322.pub2.
Latchman, D.S. (2007a) ‘Transcription Factors’. Available at: https://doi.org/10.1002/9780470015902.a0005278.pub2.
Latchman, D.S. (2007b) ‘Transcription Factors’. Available at: https://doi.org/10.1002/9780470015902.a0005278.pub2.
Legrain, P. (2006a) ‘Protein-Protein Interaction Maps’, Encyclopedia of life sciences [Preprint]. Available at: https://doi.org/10.1002/9780470015902.a0006205.
Legrain, P. (2006b) ‘Protein-Protein Interaction Maps’, eLS [Preprint]. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0006205.
Leitner, A. et al. (2016) ‘Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines’, Trends in Biochemical Sciences, 41(1), pp. 20–32. Available at: https://doi.org/10.1016/j.tibs.2015.10.008.
Lesur, A. and Domon, B. (2015) ‘Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics’, Proteomics, 15(5–6), pp. 880–890. Available at: https://doi.org/10.1002/pmic.201400450.
Liu, Y. and Aebersold, R. (2016) ‘The Interdependence of Transcript and Protein Abundance: New Data-New Complexities’, Molecular Systems Biology, 12(1), pp. 856–856. Available at: https://doi.org/10.15252/msb.20156720.
Macek, B., Mann, M. and Olsen, J.V. (2009) ‘Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications’, Annual Review of Pharmacology and Toxicology, 49(1), pp. 199–221. Available at: https://doi.org/10.1146/annurev.pharmtox.011008.145606.
Makałowski, W., Shabardina, V. and Makałowska, I. (2018) ‘Bioinformatics’, in Encyclopedia of Life Sciences. Wiley Interscience, pp. 1–9. Available at: https://doi.org/10.1002/9780470015902.a0005247.pub3.
Mansouri, A. (2005) ‘Knockout and Knock-in Animals’. Available at: https://doi.org/10.1038/npg.els.0003840.
Mardis, E.R. (2007) ‘ChIP-Seq: Welcome to the New Frontier’, Nature Methods, 4(8), pp. 613–614. Available at: https://doi.org/10.1038/nmeth0807-613.
Mardis, E.R. (2008a) ‘Next-Generation DNA Sequencing Methods’, Annual Review of Genomics and Human Genetics, 9(1), pp. 387–402. Available at: https://doi.org/10.1146/annurev.genom.9.081307.164359.
Mardis, E.R. (2008b) ‘The Impact of Next-Generation Sequencing Technology on Genetics’, Trends in Genetics, 24(3), pp. 133–141. Available at: https://doi.org/10.1016/j.tig.2007.12.007.
‘Mass Spectrometry - FTICR’ (2006). Available at: https://www.youtube.com/watch?v=a5aLlm9q-Xc.
Mass Spectrometry Facility (no date). Available at: http://www.chm.bris.ac.uk/ms/mshome.xhtml.
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia (no date). Available at: https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics.
Massie, C.E. and Mills, I.G. (2008) ‘ChIPping Away at Gene Regulation’, EMBO Reports, 9(4), pp. 337–343. Available at: https://doi.org/10.1038/embor.2008.44.
Mathé, C. and Sagot, M.-F. (2002) ‘Current Methods of Gene Prediction, Their Strengths and Weaknesses’, Nucleic Acids Research, 30(19), pp. 4103–4117. Available at: https://doi.org/10.1093/nar/gkf543.
Matsuoka, S. and Ballif, B.A. (2007) ‘ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage’, Science (New York, N.Y.), 316(5828), pp. 1160–1166. Available at: http://www.jstor.org/stable/20036331.
Matys, V. and Fricke, E. (2003a) ‘TRANSFAC: Transcriptional Regulation, From Patterns to Profiles’, Nucleic Acids Research, 31(1), pp. 374–378. Available at: https://doi.org/10.1093/nar/gkg108.
Matys, V. and Fricke, E. (2003b) ‘TRANSFAC: Transcriptional Regulation, From Patterns to Profiles’, Nucleic Acids Research, 31(1), pp. 374–378. Available at: https://doi.org/10.1093/nar/gkg108.
Metzker, M.L. (2005) ‘Emerging Technologies in DNA Sequencing’, Genome Research, 15(12), pp. 1767–1776. Available at: https://doi.org/10.1101/gr.3770505.
Meyer, P. (2006) ‘Gene Silencing in Plants’. Available at: https://doi.org/10.1002/9780470015902.a0002022.pub2.
Mitchell, P.J. and Tjian, R. (1989a) ‘Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins’, Science, 245(4916), pp. 371–378. Available at: https://doi.org/10.1126/science.2667136.
Mitchell, P.J. and Tjian, R. (1989b) ‘Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins’, Science, 245(4916), pp. 371–378. Available at: https://doi.org/10.1126/science.2667136.
Murray, D. et al. (2007) ‘In Silico Gene Expression Analysis – an Overview’, Molecular Cancer, 6(1). Available at: https://doi.org/10.1186/1476-4598-6-50.
Nemhauser, J.L., Hong, F. and Chory, J. (2006a) ‘Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses’, Cell, 126(3), pp. 467–475. Available at: https://doi.org/10.1016/j.cell.2006.05.050.
Nemhauser, J.L., Hong, F. and Chory, J. (2006b) ‘Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses’, Cell, 126(3), pp. 467–475. Available at: https://doi.org/10.1016/j.cell.2006.05.050.
Nikolov, M., Schmidt, C. and Urlaub, H. (2012a) ‘Quantitative Mass Spectrometry-Based Proteomics: An Overview’, in Quantitative Methods in Proteomics. New York: Humana Press, pp. 85–100.
Nikolov, M., Schmidt, C. and Urlaub, H. (2012b) ‘Quantitative Mass Spectrometry-Based Proteomics: An Overview’, in Quantitative Methods in Proteomics. New York: Humana Press, pp. 85–100.
Nilsson, C.L. (2012) ‘Advances in Quantitative Phosphoproteomics’, Analytical Chemistry, 84(2), pp. 735–746. Available at: https://doi.org/10.1021/ac202877y.
Olsen, J.V., Blagoev, B. and al, E. (2006) ‘Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks’, Cell, 127(3), pp. 635–648. Available at: https://doi.org/10.1016/j.cell.2006.09.026.
Olsen, J.V., Vermeulen, M. and al, E. (2010a) ‘Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis’, Science Signalling, 3(104). Available at: http://stke.sciencemag.org/content/3/104/ra3.
Olsen, J.V., Vermeulen, M. and al, E. (2010b) ‘Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis’, Science Signalling, 3(104). Available at: http://stke.sciencemag.org/content/3/104/ra3.
Oltvai, Z.N. (2002) ‘Systems Biology: Life’s Complexity Pyramid’, Science, 298(5594), pp. 763–764. Available at: https://doi.org/10.1126/science.1078563.
Oltvai, Z.N. and Barabási, A.-L. (2002) ‘Systems Biology. Life’s Complexity Pyramid’, Science (New York, N.Y.), 298(5594), pp. 763–764. Available at: https://doi.org/10.1126/science.1078563.
Oppermann, F.S., Gnad, F. and al, E. (2009) ‘Large-Scale Proteomics Analysis of the Human Kinome’, Molecular & Cellular Proteomics, 8(7), pp. 1751–1764. Available at: https://doi.org/10.1074/mcp.M800588-MCP200.
Palumbo, A.M. and Smith, S.A. (2011) ‘Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis’, Mass Spectrometry Reviews, 30(4), pp. 600–625. Available at: https://doi.org/10.1002/mas.20310.
Pan, C. et al. (2009a) ‘Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics’, Molecular & Cellular Proteomics, 8(12), pp. 2796–2808. Available at: https://doi.org/10.1074/mcp.M900285-MCP200.
Pan, C. et al. (2009b) ‘Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics’, Molecular & Cellular Proteomics, 8(12), pp. 2796–2808. Available at: https://doi.org/10.1074/mcp.M900285-MCP200.
Pavy, N. and Leroy, P. (1999) ‘Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences’, Bioinformatics, 15(11), pp. 887–899. Available at: https://doi.org/10.1093/bioinformatics/15.11.887.
Peptide Mass Fingerprinting an IonSource Tutorial (no date). Available at: http://www.ionsource.com/tutorial/.
Petschnigg, J., Snider, J. and Stagljar, I. (2011a) ‘Interactive Proteomics Research Technologies: Recent Applications and Advances’, Current Opinion in Biotechnology, 22(1), pp. 50–58. Available at: https://doi.org/10.1016/j.copbio.2010.09.001.
Petschnigg, J., Snider, J. and Stagljar, I. (2011b) ‘Interactive Proteomics Research Technologies: Recent Applications and Advances’, Current Opinion in Biotechnology, 22(1), pp. 50–58. Available at: https://doi.org/10.1016/j.copbio.2010.09.001.
Pieroni, E. and de la Fuente van Bentem, S. (2008a) ‘Protein Networking: Insights Into Global Functional Organization of Proteomes’, Proteomics, 8(4), pp. 799–816. Available at: https://doi.org/10.1002/pmic.200700767.
Pieroni, E. and de la Fuente van Bentem, S. (2008b) ‘Protein Networking: Insights Into Global Functional Organization of Proteomes’, Proteomics, 8(4), pp. 799–816. Available at: https://doi.org/10.1002/pmic.200700767.
‘Proteomics Analysis Step by Step Tutorial Educative File’ (no date). Available at: https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=97161.
Puig, O. and Caspary, F. (2001) ‘The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification’, Methods, 24(3), pp. 218–229. Available at: https://doi.org/10.1006/meth.2001.1183.
Rajagopala, S.V. et al. (2012a) ‘Studying Protein Complexes by the Yeast Two-Hybrid System’, Methods, 58(4), pp. 392–399. Available at: https://doi.org/10.1016/j.ymeth.2012.07.015.
Rajagopala, S.V. et al. (2012b) ‘Studying Protein Complexes by the Yeast Two-Hybrid System’, Methods, 58(4), pp. 392–399. Available at: https://doi.org/10.1016/j.ymeth.2012.07.015.
Rank, D.R. and Hanzel, D.K. (2006) ‘Microarrays: Use in Gene Identification’. Available at: https://doi.org/10.1038/npg.els.0005952.
Ren, B. and Dynlacht, B.D. (2003) ‘Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors’, Chromatin and Chromatin Remodeling Enzymes, Part B, 376, pp. 304–315. Available at: https://doi.org/10.1016/S0076-6879(03)76020-0.
Ren, B. and Robert, F. (2000) ‘Genome-Wide Location and Function of DNA Binding Proteins’, Science, 290(5500), pp. 2306–2309. Available at: https://doi.org/10.1126/science.290.5500.2306.
Rockett, J.C. and Dix, D.J. (2006) ‘Gene Expression Networks’. Available at: https://doi.org/10.1038/npg.els.0005280.
Rual, J.-F. and Venkatesan, K. (2005a) ‘Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network’, Nature, 437(7062), pp. 1173–1178. Available at: https://doi.org/10.1038/nature04209.
Rual, J.-F. and Venkatesan, K. (2005b) ‘Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network’, Nature, 437(7062), pp. 1173–1178. Available at: https://doi.org/10.1038/nature04209.
Sakuma, Y. and Maruyama, K. (2006) ‘Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression’, Proceedings of the National Academy of Sciences of the United States, 103(49), pp. 18822–18827. Available at: https://doi.org/10.1073/pnas.0605639103.
Santamaria, A. and Wang, B. (2011) ‘The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle’, Molecular & Cellular Proteomics, 10(1), p. M110.004457-M110.004457. Available at: https://doi.org/10.1074/mcp.M110.004457.
Schreiber, T.B. and Mausbacher, N. (2010) ‘An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling’, Molecular & Cellular Proteomics, 9(6), pp. 1047–1062. Available at: https://doi.org/10.1074/mcp.M900486-MCP200.
Semenza, G.L. (2005a) ‘Transcription Factors and Human Disorders’. Available at: https://doi.org/10.1038/npg.els.0005504.
Semenza, G.L. (2005b) ‘Transcription Factors and Human Disorders’. Available at: https://doi.org/10.1038/npg.els.0005504.
Silva, J.M., Hammond, S.M. and Hannon, G.J. (2002) ‘RNA Interference: A Promising Approach to Antiviral Therapy?’, Trends in Molecular Medicine, 8(11), pp. 505–508. Available at: https://doi.org/10.1016/S1471-4914(02)02421-8.
Singh, K. (2002a) ‘Transcription Factors in Plant Defense and Stress Responses’, Current Opinion in Plant Biology, 5(5), pp. 430–436. Available at: https://doi.org/10.1016/S1369-5266(02)00289-3.
Singh, K. (2002b) ‘Transcription Factors in Plant Defense and Stress Responses’, Current Opinion in Plant Biology, 5(5), pp. 430–436. Available at: https://doi.org/10.1016/S1369-5266(02)00289-3.
Smith, R.S. and Gutierrez-Arcelus, M. (2008) ‘Structural Diversity of the Human Genome and Disease Susceptibility’. Available at: https://doi.org/10.1002/9780470015902.a0020764.
Sonnhammer, E.L. and Eddy, S.R. (1998) ‘Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains’, Nucleic Acids Research, 26(1), pp. 320–322. Available at: https://doi.org/10.1093/nar/26.1.320.
Soppe, W.J.J., Jacobsen, S.E. and al, E. (2000) ‘The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene’, Molecular Cell, 6(4), pp. 791–802. Available at: https://doi.org/10.1016/S1097-2765(05)00090-0.
Steckelberg, A.-L. et al. (2012a) ‘CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly’, Cell Reports, 2(3), pp. 454–461. Available at: https://doi.org/10.1016/j.celrep.2012.08.017.
Steckelberg, A.-L. et al. (2012b) ‘CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly’, Cell Reports, 2(3), pp. 454–461. Available at: https://doi.org/10.1016/j.celrep.2012.08.017.
Steen, H. and Mann, M. (2004) ‘The ABC’s (And XYZ’s) of Peptide Sequencing’, Nature Reviews Molecular Cell Biology, 5(9), pp. 699–711. Available at: https://doi.org/10.1038/nrm1468.
Stubbs, A.P., Van Yper, S.J.L. and van der Spek, P.J. (2008) ‘Microarray Bioinformatics’. Available at: https://doi.org/10.1002/9780470015902.a0005957.pub2.
Suter, B., Kittanakom, S. and Stagljar, I. (2008a) ‘Two-Hybrid Technologies in Proteomics Research’, Current Opinion in Biotechnology, 19(4), pp. 316–323. Available at: https://doi.org/10.1016/j.copbio.2008.06.005.
Suter, B., Kittanakom, S. and Stagljar, I. (2008b) ‘Two-Hybrid Technologies in Proteomics Research’, Current Opinion in Biotechnology, 19(4), pp. 316–323. Available at: https://doi.org/10.1016/j.copbio.2008.06.005.
Thingholm, T.E. and Jensen, O.N. (2008) ‘SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides’, Molecular & Cellular Proteomics: Mcp, 7(4), pp. 661–671. Available at: https://doi.org/10.1074/mcp.M700362-MCP200.
Tohge, T. and Fernie, A.R. (2012) ‘Co-Expression and Co-Responses: Within and Beyond Transcription’, Frontiers in Plant Science, 3. Available at: https://doi.org/10.3389/fpls.2012.00248.
Tuschl, T. (2003) ‘Functional Genomics: RNA Sets the Standard’, Nature, 421(6920), pp. 220–221. Available at: https://doi.org/10.1038/421220a.
Tyson, J.J., Chen, K. and Novak, B. (2001a) ‘Milestones Network Dynamics and Cell Physiology’, Nature Reviews Molecular Cell Biology, 2(12), pp. 908–916. Available at: https://doi.org/10.1038/35103078.
Tyson, J.J., Chen, K. and Novak, B. (2001b) ‘Milestones Network Dynamics and Cell Physiology’, Nature Reviews Molecular Cell Biology, 2(12), pp. 908–916. Available at: https://doi.org/10.1038/35103078.
Ummanni, R., Mundt, F. and Balabanov, S. (2011) ‘Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform’, PLoS ONE, 6(2). Available at: https://doi.org/10.1371/journal.pone.0016833.
Von Mering, C. and Jensen, L.J. (2005a) ‘STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms’, Nucleic Acids Research, 33(Database issue), pp. D433–D437. Available at: https://doi.org/10.1093/nar/gki005.
Von Mering, C. and Jensen, L.J. (2005b) ‘STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms’, Nucleic Acids Research, 33(Database issue), pp. D433–D437. Available at: https://doi.org/10.1093/nar/gki005.
Weigel, D. and Ahn, J.H. (2000) ‘Activation Tagging in Arabidopsis’, Plant Physiology, 122(4), pp. 1003–1013. Available at: https://doi.org/10.1038/npg.els.0005280.
What is Mass Spectrometry? (no date). Available at: https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec.
Yates, J.R. and Link, A.J. (1999) ‘Direct Analysis of Protein Complexes Using Mass Spectrometry’, Nature Biotechnology, 17(7), pp. 676–682. Available at: https://doi.org/10.1038/10890.
Zerbino, D.R., Paten, B. and Haussler, D. (2012) ‘Integrating Genomes’, Science, 336(6078), pp. 179–182. Available at: https://doi.org/10.1126/science.1216830.
Zhang, W.-J., Pedersen, C. and al, E. (2012) ‘Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c’, Molecular Plant Pathology, 13(9), pp. 1110–1119. Available at: https://doi.org/10.1111/j.1364-3703.2012.00820.x.
Zhu, J.-K. (2002a) ‘Salt and Drought Stress Signal Transduction in Plants’, Annual Review of Plant Biology, 53(1), pp. 247–273. Available at: https://doi.org/10.1146/annurev.arplant.53.091401.143329.
Zhu, J.-K. (2002b) ‘Salt and Drought Stress Signal Transduction in Plants’, Annual Review of Plant Biology, 53(1), pp. 247–273. Available at: https://doi.org/10.1146/annurev.arplant.53.091401.143329.
Zilberman, D. and Henikoff, S. (2005) ‘Epigenetic Inheritance in Arabidopsis: Selective Silence’, Current Opinion in Genetics & Development, 15(5), pp. 557–562. Available at: https://doi.org/10.1016/j.gde.2005.07.002.
Zvelebil, Marketa J. and Baum, J.O. (2008a) ‘Analyzing Structure-Function Relationships’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008b) ‘Dealing with Databases’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008c) ‘Gene Detection and Genome Annotation’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008d) ‘Predicting Secondary Structures’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008e) ‘Protein Structure’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008f) ‘Proteome and Gene Expression Analysis’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008g) ‘Revealing Genome Features’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J. and Baum, J.O. (2008h) ‘Systems Biology’, in Understanding Bioinformatics. New York: Garland Science.
Zvelebil, Marketa J and Baum, J.O. (2008) Understanding Bioinformatics. New York: Garland Science.