[1]
M. J. Zvelebil and J. O. Baum, Understanding Bioinformatics. New York: Garland Science, 2008.
[2]
M. J. Zvelebil and J. O. Baum, ‘Protein Structure’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[3]
M. J. Zvelebil and J. O. Baum, ‘Dealing with Databases’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[4]
M. J. Zvelebil and J. O. Baum, ‘Revealing Genome Features’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[5]
M. J. Zvelebil and J. O. Baum, ‘Gene Detection and Genome Annotation’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[6]
M. J. Zvelebil and J. O. Baum, ‘Predicting Secondary Structures’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[7]
M. J. Zvelebil and J. O. Baum, ‘Analyzing Structure-Function Relationships’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[8]
M. J. Zvelebil and J. O. Baum, ‘Proteome and Gene Expression Analysis’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[9]
M. J. Zvelebil and J. O. Baum, ‘Systems Biology’, in Understanding Bioinformatics, New York: Garland Science, 2008.
[10]
D. Baker and A. Sali, ‘Protein Structure Prediction and Structural Genomics’, Science, vol. 294, no. 5540, pp. 93–96, 2001, doi: 10.1126/science.1065659.
[11]
T. R. Hughes and M. J. Marton, ‘Functional Discovery via a Compendium of Expression Profiles’, Cell, vol. 102, no. 1, pp. 109–126, 2000, doi: 10.1016/S0092-8674(00)00015-5.
[12]
S. Goldsmith-Fischman and B. Honig, ‘Structural Genomics: Computational Methods for Structure Analysis’, Protein Science, vol. 12, no. 9, pp. 1813–1821, 2003, doi: 10.1110/ps.0242903.
[13]
J. W. Jung and W. Lee, ‘Structure-Based Functional Discovery of Proteins: Structural Proteomics’, Journal of Biochemistry and Molecular Biology, vol. 37, no. 1, pp. 28–34, 2004.
[14]
R. S. Smith and M. Gutierrez-Arcelus, ‘Structural Diversity of the Human Genome and Disease Susceptibility’, 2008, doi: 10.1002/9780470015902.a0020764.
[15]
J. C. Rockett and D. J. Dix, ‘Gene Expression Networks’, 2006, doi: 10.1038/npg.els.0005280. [Online]. Available: https://doi.org/10.1038/npg.els.0005280
[16]
A. P. Stubbs, S. J. L. Van Yper, and P. J. van der Spek, ‘Microarray Bioinformatics’, 2008, doi: 10.1002/9780470015902.a0005957.pub2. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0005957.html
[17]
D. R. Rank and D. K. Hanzel, ‘Microarrays: Use in Gene Identification’, 2006, doi: 10.1038/npg.els.0005952. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0005952.html
[18]
A. Brazma and U. Sarkans, ‘Gene Expression Databases’, 2007, doi: 10.1002/9780470015902.a0005248.pub2. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0005248.html
[19]
J. R. Yates and A. J. Link, ‘Direct Analysis of Protein Complexes Using Mass Spectrometry’, Nature Biotechnology, vol. 17, no. 7, pp. 676–682, 1999, doi: 10.1038/10890.
[20]
W. Makałowski, V. Shabardina, and I. Makałowska, ‘Bioinformatics’, in Encyclopedia of Life Sciences, Wiley Interscience, 2018, pp. 1–9 [Online]. Available: http://doi.wiley.com/10.1002/9780470015902.a0005247.pub3
[21]
S. F. Altschul, M. S. Boguski, W. Gish, and J. C. Wootton, ‘Issues in Searching Molecular Sequence Databases’, Nature Genetics, vol. 6, no. 2, pp. 119–129, 1994.
[22]
C. Mathé and M.-F. Sagot, ‘Current Methods of Gene Prediction, Their Strengths and Weaknesses’, Nucleic Acids Research, vol. 30, no. 19, pp. 4103–4117, 2002, doi: 10.1093/nar/gkf543.
[23]
E. L. Sonnhammer and S. R. Eddy, ‘Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains’, Nucleic Acids Research, vol. 26, no. 1, pp. 320–322, 1998, doi: 10.1093/nar/26.1.320.
[24]
R. Apweiler and T. K. Attwood, ‘The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites’, Nucleic Acids Research, vol. 29, no. 1, pp. 37–40, 2001, doi: 10.1093/nar/29.1.37.
[25]
N. Pavy and P. Leroy, ‘Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences’, Bioinformatics, vol. 15, no. 11, pp. 887–899, 1999, doi: 10.1093/bioinformatics/15.11.887.
[26]
M. Katoh and M. Kato, ‘Comparative Genomics between Drosophila and Human [open access]’, Genome Informatics, vol. 14, pp. 587–588, 2003 [Online]. Available: http://www.jsbi.org/pdfs/journal1/GIW03/GIW03P190.pdf
[27]
T. Tohge and A. R. Fernie, ‘Co-Expression and Co-Responses: Within and Beyond Transcription’, Frontiers in Plant Science, vol. 3, 2012, doi: 10.3389/fpls.2012.00248.
[28]
D. Murray, P. Doran, P. MacMathuna, and A. C. Moss, ‘In Silico Gene Expression Analysis – an Overview’, Molecular Cancer, vol. 6, no. 1, 2007, doi: 10.1186/1476-4598-6-50.
[29]
Y. Sakuma and K. Maruyama, ‘Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression’, Proceedings of the National Academy of Sciences of the United States, vol. 103, no. 49, pp. 18822–18827, 2006, doi: 10.1073/pnas.0605639103.
[30]
D. Zilberman and S. Henikoff, ‘Epigenetic Inheritance in Arabidopsis: Selective Silence’, Current Opinion in Genetics & Development, vol. 15, no. 5, pp. 557–562, 2005, doi: 10.1016/j.gde.2005.07.002.
[31]
‘Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals’, Biological Chemistry Hoppe-Seyler, vol. 377, no. 10, pp. 605–618, 1996, doi: 10.1515/bchm3.1996.377.10.605.
[32]
W. J. J. Soppe, S. E. Jacobsen, and E. al, ‘The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene’, Molecular Cell, vol. 6, no. 4, pp. 791–802, 2000, doi: 10.1016/S1097-2765(05)00090-0.
[33]
D. Weigel and J. H. Ahn, ‘Activation Tagging in Arabidopsis’, Plant Physiology, vol. 122, no. 4, pp. 1003–1013, 2000 [Online]. Available: https://doi.org/10.1038/npg.els.0005280
[34]
A. Mansouri, ‘Knockout and Knock-in Animals’, 2005, doi: 10.1038/npg.els.0003840. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0000991.html
[35]
K. Goljanek-Whysall and D. Sweetman, ‘Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology)’, Proceedings of the National Academy of Sciences of the United States, vol. 108, no. 29, pp. 11936–11941, 2011 [Online]. Available: http://www.jstor.org/stable/27978927
[36]
A. Eamens and M.-B. Wang, ‘RNA Silencing in Plants: Yesterday, Today, and Tomorrow’, Plant Physiology, vol. 147, no. 2, pp. 456–468, 2008 [Online]. Available: http://www.jstor.org/stable/40066045
[37]
F. E. Nicolas, S. Lopez-Gomollon, A. F. Lopez-Martinez, and T. Dalmay, ‘Silencing Human Cancer: Identification and Uses of MicroRNAs’, Recent Patents on Anti-Cancer Drug Discovery, vol. 6, no. 1, pp. 94–105, 2011, doi: 10.2174/157489211793980033.
[38]
G. J. Hannon, ‘RNA Interference’, Nature, vol. 418, no. 6894, pp. 244–251, 2002, doi: 10.1038/418244a.
[39]
T. Tuschl, ‘Functional Genomics: RNA Sets the Standard’, Nature, vol. 421, no. 6920, pp. 220–221, 2003, doi: 10.1038/421220a.
[40]
J. M. Silva, S. M. Hammond, and G. J. Hannon, ‘RNA Interference: A Promising Approach to Antiviral Therapy?’, Trends in Molecular Medicine, vol. 8, no. 11, pp. 505–508, 2002, doi: 10.1016/S1471-4914(02)02421-8.
[41]
P. Meyer, ‘Gene Silencing in Plants’, 2006, doi: 10.1002/9780470015902.a0002022.pub2. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0002022.pub2
[42]
J.-M. Jacque, K. Triques, and M. Stevenson, ‘Modulation of HIV-1 Replication by RNA Interference’, Nature, vol. 418, no. 6896, pp. 435–438, 2002, doi: 10.1038/nature00896.
[43]
D. S. Latchman, ‘Transcription Factors’, 2007, doi: 10.1002/9780470015902.a0005278.pub2. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0005278.pub2
[44]
P. J. Mitchell and R. Tjian, ‘Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins’, Science, vol. 245, no. 4916, pp. 371–378, 1989, doi: 10.1126/science.2667136.
[45]
G. L. Semenza, ‘Transcription Factors and Human Disorders’, 2005, doi: 10.1038/npg.els.0005504. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0005504.html
[46]
D. S. Latchman, ‘Transcriptional Gene Regulation in Eukaryotes’, 2005, doi: 10.1002/9780470015902.a0002322.pub2.
[47]
W. J. Gehring and K. Ikeo, ‘Pax 6: Mastering Eye Morphogenesis and Eye Evolution’, Trends in Genetics, vol. 15, no. 9, pp. 371–377, 1999, doi: 10.1016/S0168-9525(99)01776-X.
[48]
H. Knight and M. R. Knight, ‘Abiotic Stress Signalling Pathways: Specificity and Cross-Talk’, Trends in Plant Science, vol. 6, no. 6, pp. 262–267, 2001, doi: 10.1016/S1360-1385(01)01946-X.
[49]
J.-K. Zhu, ‘Salt and Drought Stress Signal Transduction in Plants’, Annual Review of Plant Biology, vol. 53, no. 1, pp. 247–273, 2002, doi: 10.1146/annurev.arplant.53.091401.143329.
[50]
K. Singh, ‘Transcription Factors in Plant Defense and Stress Responses’, Current Opinion in Plant Biology, vol. 5, no. 5, pp. 430–436, 2002, doi: 10.1016/S1369-5266(02)00289-3.
[51]
A. Devoto and J. G. Turner, ‘Jasmonate-Regulated Arabidopsis Stress Signalling Network’, Physiologia Plantarum, vol. 123, no. 2, pp. 161–172, 2005, doi: 10.1111/j.1399-3054.2004.00418.x.
[52]
V. Matys and E. Fricke, ‘TRANSFAC: Transcriptional Regulation, From Patterns to Profiles’, Nucleic Acids Research, vol. 31, no. 1, pp. 374–378, 2003, doi: 10.1093/nar/gkg108.
[53]
D. S. Latchman, ‘Transcription Factors’, 2007, doi: 10.1002/9780470015902.a0005278.pub2. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0005278.html
[54]
P. J. Mitchell and R. Tjian, ‘Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins’, Science, vol. 245, no. 4916, pp. 371–378, 1989, doi: 10.1126/science.2667136.
[55]
G. L. Semenza, ‘Transcription Factors and Human Disorders’, 2005, doi: 10.1038/npg.els.0005504. [Online]. Available: http://www.els.net/WileyCDA/ElsArticle/refId-a0005504.html
[56]
D. S. Latchman, ‘Transcriptional Gene Regulation in Eukaryotes’, 2005, doi: 10.1002/9780470015902.a0002322.pub2.
[57]
W. J. Gehring and K. Ikeo, ‘Pax 6: Mastering Eye Morphogenesis and Eye Evolution’, Trends in Genetics, vol. 15, no. 9, pp. 371–377, 1999, doi: 10.1016/S0168-9525(99)01776-X.
[58]
H. Knight and M. R. Knight, ‘Abiotic Stress Signalling Pathways: Specificity and Cross-Talk’, Trends in Plant Science, vol. 6, no. 6, pp. 262–267, 2001, doi: 10.1016/S1360-1385(01)01946-X.
[59]
J.-K. Zhu, ‘Salt and Drought Stress Signal Transduction in Plants’, Annual Review of Plant Biology, vol. 53, no. 1, pp. 247–273, 2002, doi: 10.1146/annurev.arplant.53.091401.143329.
[60]
K. Singh, ‘Transcription Factors in Plant Defense and Stress Responses’, Current Opinion in Plant Biology, vol. 5, no. 5, pp. 430–436, 2002, doi: 10.1016/S1369-5266(02)00289-3.
[61]
A. Devoto and J. G. Turner, ‘Jasmonate-Regulated Arabidopsis Stress Signalling Network’, Physiologia Plantarum, vol. 123, no. 2, pp. 161–172, 2005, doi: 10.1111/j.1399-3054.2004.00418.x.
[62]
V. Matys and E. Fricke, ‘TRANSFAC: Transcriptional Regulation, From Patterns to Profiles’, Nucleic Acids Research, vol. 31, no. 1, pp. 374–378, 2003, doi: 10.1093/nar/gkg108.
[63]
D. R. Zerbino, B. Paten, and D. Haussler, ‘Integrating Genomes’, Science, vol. 336, no. 6078, pp. 179–182, 2012, doi: 10.1126/science.1216830.
[64]
H. Kitano, ‘Computational Systems Biology’, Nature, vol. 420, no. 6912, pp. 206–210, 2002, doi: 10.1038/nature01254.
[65]
T. Ideker, T. Galitski, and L. Hood, ‘A New Approach to Decoding Life: Systems Biology’, Annual Review of Genomics and Human Genetics, vol. 2, no. 1, pp. 343–372, 2001, doi: 10.1146/annurev.genom.2.1.343.
[66]
J. J. Tyson, K. Chen, and B. Novak, ‘Milestones Network Dynamics and Cell Physiology’, Nature Reviews Molecular Cell Biology, vol. 2, no. 12, pp. 908–916, 2001, doi: 10.1038/35103078.
[67]
F. J. Bruggeman and H. V. Westerhoff, ‘The Nature of Systems Biology’, Trends in Microbiology, vol. 15, no. 1, pp. 45–50, 2007, doi: 10.1016/j.tim.2006.11.003.
[68]
P. Aloy and R. B. Russell, ‘Structure-Based Systems Biology: A Zoom Lens for the Cell’, FEBS Letters, vol. 579, no. 8, pp. 1854–1858, 2005, doi: 10.1016/j.febslet.2005.02.014.
[69]
C. T. Harbison, D. B. Gordon, and R. A. Young, ‘Transcriptional Regulatory Code of a Eukaryotic Genome’, Nature, vol. 431, no. 7004, pp. 99–104, 2004, doi: 10.1038/nature02800.
[70]
C.-H. Jen and I. W. Manfield, ‘The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis’, The Plant Journal, vol. 46, no. 2, pp. 336–348, 2006, doi: 10.1111/j.1365-313X.2006.02681.x.
[71]
Z. N. Oltvai and A.-L. Barabási, ‘Systems Biology. Life’s Complexity Pyramid’, Science (New York, N.Y.), vol. 298, no. 5594, pp. 763–764, 2002, doi: 10.1126/science.1078563.
[72]
J. L. Nemhauser, F. Hong, and J. Chory, ‘Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses’, Cell, vol. 126, no. 3, pp. 467–475, 2006, doi: 10.1016/j.cell.2006.05.050.
[73]
P. Legrain, ‘Protein-Protein Interaction Maps’, Encyclopedia of life sciences, 2006, doi: 10.1002/9780470015902.a0006205. [Online]. Available: http://doi.wiley.com/10.1002/9780470015902.a0006205
[74]
N. J. Krogan and G. Cagney, ‘Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae’, Nature, vol. 440, no. 7084, pp. 637–643, 2006, doi: 10.1038/nature04670.
[75]
C. Von Mering and L. J. Jensen, ‘STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms’, Nucleic Acids Research, vol. 33, no. Database issue, pp. D433–D437, 2005, doi: 10.1093/nar/gki005.
[76]
E. Pieroni and S. de la Fuente van Bentem, ‘Protein Networking: Insights Into Global Functional Organization of Proteomes’, Proteomics, vol. 8, no. 4, pp. 799–816, 2008, doi: 10.1002/pmic.200700767.
[77]
P. Bork and L. J. Jensen, ‘Protein Interaction Networks From Yeast to Human’, Current Opinion in Structural Biology, vol. 14, no. 3, pp. 292–299, 2004, doi: 10.1016/j.sbi.2004.05.003.
[78]
L. J. Jensen and M. Kuhn, ‘STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms’, Nucleic Acids Research, vol. 37, no. Database, pp. D412–D416, 2009, doi: 10.1093/nar/gkn760.
[79]
C.-H. Jen and I. W. Manfield, ‘The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis’, The Plant Journal, vol. 46, no. 2, pp. 336–348, 2006, doi: 10.1111/j.1365-313X.2006.02681.x.
[80]
Z. N. Oltvai, ‘Systems Biology: Life’s Complexity Pyramid’, Science, vol. 298, no. 5594, pp. 763–764, 2002, doi: 10.1126/science.1078563.
[81]
J. L. Nemhauser, F. Hong, and J. Chory, ‘Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses’, Cell, vol. 126, no. 3, pp. 467–475, 2006, doi: 10.1016/j.cell.2006.05.050.
[82]
P. Legrain, ‘Protein-Protein Interaction Maps’, eLS, 2006 [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0006205
[83]
N. J. Krogan and G. Cagney, ‘Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae’, Nature, vol. 440, no. 7084, pp. 637–643, 2006, doi: 10.1038/nature04670.
[84]
C. Von Mering and L. J. Jensen, ‘STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms’, Nucleic Acids Research, vol. 33, no. Database issue, pp. D433–D437, 2005, doi: 10.1093/nar/gki005.
[85]
E. Pieroni and S. de la Fuente van Bentem, ‘Protein Networking: Insights Into Global Functional Organization of Proteomes’, Proteomics, vol. 8, no. 4, pp. 799–816, 2008, doi: 10.1002/pmic.200700767.
[86]
P. Bork and L. J. Jensen, ‘Protein Interaction Networks From Yeast to Human’, Current Opinion in Structural Biology, vol. 14, no. 3, pp. 292–299, 2004, doi: 10.1016/j.sbi.2004.05.003.
[87]
L. J. Jensen and M. Kuhn, ‘STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms’, Nucleic Acids Research, vol. 37, no. Database, pp. D412–D416, 2009, doi: 10.1093/nar/gkn760.
[88]
C. E. Massie and I. G. Mills, ‘ChIPping Away at Gene Regulation’, EMBO Reports, vol. 9, no. 4, pp. 337–343, 2008, doi: 10.1038/embor.2008.44.
[89]
C. T. Harbison, D. B. Gordon, and R. A. Young, ‘Transcriptional Regulatory Code of a Eukaryotic Genome’, Nature, vol. 431, no. 7004, pp. 99–104, 2004, doi: 10.1038/nature02800.
[90]
B. Ren and B. D. Dynlacht, ‘Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors’, Chromatin and Chromatin Remodeling Enzymes, Part B, vol. 376, pp. 304–315, 2003 [Online]. Available: https://doi.org/10.1016/S0076-6879(03)76020-0
[91]
B. Ren and F. Robert, ‘Genome-Wide Location and Function of DNA Binding Proteins’, Science, vol. 290, no. 5500, pp. 2306–2309, 2000, doi: 10.1126/science.290.5500.2306.
[92]
E. R. Mardis, ‘ChIP-Seq: Welcome to the New Frontier’, Nature Methods, vol. 4, no. 8, pp. 613–614, 2007, doi: 10.1038/nmeth0807-613.
[93]
D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, ‘Genome-Wide Mapping of in Vivo Protein-DNA Interactions’, Science (New York, N.Y.), vol. 316, no. 5830, pp. 1497–1502, 2007, doi: 10.1126/science.1141319.
[94]
E. R. Mardis, ‘Next-Generation DNA Sequencing Methods’, Annual Review of Genomics and Human Genetics, vol. 9, no. 1, pp. 387–402, 2008, doi: 10.1146/annurev.genom.9.081307.164359.
[95]
M. L. Metzker, ‘Emerging Technologies in DNA Sequencing’, Genome Research, vol. 15, no. 12, pp. 1767–1776, 2005, doi: 10.1101/gr.3770505.
[96]
A. J. Amaral and H.-J. Megens, ‘Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome’, BMC Genomics, vol. 10, no. 1, 2009, doi: 10.1186/1471-2164-10-374.
[97]
E. R. Mardis, ‘The Impact of Next-Generation Sequencing Technology on Genetics’, Trends in Genetics, vol. 24, no. 3, pp. 133–141, 2008, doi: 10.1016/j.tig.2007.12.007.
[98]
T. Ideker, T. Galitski, and L. Hood, ‘A New Approach to Decoding Life: Systems Biology’, Annual Review of Genomics and Human Genetics, vol. 2, no. 1, pp. 343–372, 2001, doi: 10.1146/annurev.genom.2.1.343.
[99]
J. J. Tyson, K. Chen, and B. Novak, ‘Milestones Network Dynamics and Cell Physiology’, Nature Reviews Molecular Cell Biology, vol. 2, no. 12, pp. 908–916, 2001, doi: 10.1038/35103078.
[100]
F. J. Bruggeman and H. V. Westerhoff, ‘The Nature of Systems Biology’, Trends in Microbiology, vol. 15, no. 1, pp. 45–50, 2007, doi: 10.1016/j.tim.2006.11.003.
[101]
P. Aloy and R. B. Russell, ‘Structure-Based Systems Biology: A Zoom Lens for the Cell’, FEBS Letters, vol. 579, no. 8, pp. 1854–1858, 2005, doi: 10.1016/j.febslet.2005.02.014.
[102]
B. F. Cravatt, G. M. Simon, and J. R. Yates III, ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, vol. 450, no. 7172, pp. 991–1000, 2007, doi: 10.1038/nature06525.
[103]
C. Choudhary and M. Mann, ‘Decoding Signalling Networks by Mass Spectrometry-Based Proteomics’, Nature Reviews Molecular Cell Biology, vol. 11, no. 6, pp. 427–439, 2010, doi: 10.1038/nrm2900.
[104]
B. Domon and R. Aebersold, ‘Options and Considerations When Selecting a Quantitative Proteomics Strategy’, Nature Biotechnology, vol. 28, no. 7, pp. 710–721, 2010, doi: 10.1038/nbt.1661.
[105]
L. J. Foster and C. L. de Hoog, ‘A Mammalian Organelle Map by Protein Correlation Profiling’, Cell, vol. 125, no. 1, pp. 187–199, 2006, doi: 10.1016/j.cell.2006.03.022.
[106]
J. V. Olsen, B. Blagoev, and E. al, ‘Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks’, Cell, vol. 127, no. 3, pp. 635–648, 2006, doi: 10.1016/j.cell.2006.09.026.
[107]
F. S. Oppermann, F. Gnad, and E. al, ‘Large-Scale Proteomics Analysis of the Human Kinome’, Molecular & Cellular Proteomics, vol. 8, no. 7, pp. 1751–1764, 2009, doi: 10.1074/mcp.M800588-MCP200. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709199/
[108]
C. Pan, J. V. Olsen, H. Daub, and M. Mann, ‘Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics’, Molecular & Cellular Proteomics, vol. 8, no. 12, pp. 2796–2808, 2009, doi: 10.1074/mcp.M900285-MCP200.
[109]
J. V. Olsen, M. Vermeulen, and E. al, ‘Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis’, Science Signalling, vol. 3, no. 104, 2010 [Online]. Available: http://stke.sciencemag.org/content/3/104/ra3
[110]
S. Matsuoka and B. A. Ballif, ‘ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage’, Science (New York, N.Y.), vol. 316, no. 5828, pp. 1160–1166, 2007 [Online]. Available: http://www.jstor.org/stable/20036331
[111]
N. N. Danial, C. F. Gramm, and E. al, ‘BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis’, Nature, vol. 424, no. 6951, pp. 952–956, 2003, doi: 10.1038/nature01825.
[112]
M. Gstaiger and R. Aebersold, ‘Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology’, Nature Reviews Genetics, vol. 10, no. 9, pp. 617–627, 2009, doi: 10.1038/nrg2633.
[113]
R. Aebersold, ‘Quantitative Proteomics’. 2008 [Online]. Available: https://hstalks.com/t/949/quantitative-proteomics/
[114]
R. Aebersold and M. Mann, ‘Mass Spectrometry-Based Proteomics’, Nature, vol. 422, no. 6928, pp. 198–207, 2003, doi: 10.1038/nature01511.
[115]
B. Domon and R. Aebersold, ‘Mass Spectrometry and Protein Analysis’, Science, vol. 312, no. 5771, pp. 212–217, 2006, doi: 10.1126/science.1124619.
[116]
B. Canas, ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, vol. 4, no. 4, pp. 295–320, 2006, doi: 10.1093/bfgp/eli002.
[117]
Gary Siuzdak, The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr, 2003.
[118]
‘Proteomics Analysis Step by Step Tutorial Educative File’. [Online]. Available: https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=97161
[119]
J. Balog and L. Sasi-Szabo, ‘Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry’, Science Translational Medicine, vol. 5, no. 194, pp. 194ra93-194ra93, 2013, doi: 10.1126/scitranslmed.3005623.
[120]
P. J. Boersema, A. Kahraman, and P. Picotti, ‘Proteomics Beyond Large-Scale Protein Expression Analysis’, Current Opinion in Biotechnology, vol. 34, pp. 162–170, 2015, doi: 10.1016/j.copbio.2015.01.005.
[121]
R. Aebersold and M. Mann, ‘Mass Spectrometry-Based Proteomics’, Nature, vol. 422, no. 6928, pp. 198–207, 2003, doi: 10.1038/nature01511.
[122]
B. Canas, ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, vol. 4, no. 4, pp. 295–320, 2006, doi: 10.1093/bfgp/eli002.
[123]
J. Cox and M. Mann, ‘Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology’, Annual Review of Biochemistry, vol. 80, no. 1, pp. 273–299, 2011, doi: 10.1146/annurev-biochem-061308-093216.
[124]
T. Geiger and A. Wehner, ‘Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins’, Molecular & Cellular Proteomics, vol. 11, no. 3, 2012, doi: 10.1074/mcp.M111.014050. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316730/
[125]
B. Domon and R. Aebersold, ‘Mass Spectrometry and Protein Analysis’, Science, vol. 312, no. 5771, pp. 212–217, 2006, doi: 10.1126/science.1124619.
[126]
N. G. Ahn, J. B. Shabb, W. M. Old, and K. A. Resing, ‘Achieving In-Depth Proteomics Profiling by Mass Spectrometry’, ACS Chemical Biology, vol. 2, no. 1, pp. 39–52, 2007, doi: 10.1021/cb600357d.
[127]
X. Chen and L. Sun, ‘Amino Acid-Coded Tagging Approaches in Quantitative Proteomics’, Expert Review of Proteomics, vol. 4, no. 1, pp. 25–37, 2007, doi: 10.1586/14789450.4.1.25.
[128]
B. F. Cravatt, G. M. Simon, and J. R. Yates III, ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, vol. 450, no. 7172, pp. 991–1000, 2007, doi: 10.1038/nature06525.
[129]
X. Han, A. Aslanian, and J. R. Yates, ‘Mass Spectrometry for Proteomics’, Current Opinion in Chemical Biology, vol. 12, no. 5, pp. 483–490, 2008, doi: 10.1016/j.cbpa.2008.07.024.
[130]
C. Ansong and S. O. Purvine, ‘Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation’, Briefings in Functional Genomics and Proteomics, vol. 7, no. 1, pp. 50–62, 2008, doi: 10.1093/bfgp/eln010.
[131]
‘Center for Metabolomics and Mass Spectrometry | Scripps Research’. [Online]. Available: https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html
[132]
‘Mass Spectrometry Facility’. [Online]. Available: http://www.chm.bris.ac.uk/ms/mshome.xhtml
[133]
D. A. E. Ashcroft, ‘An Introduction to Mass Spectrometry’. [Online]. Available: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm
[134]
‘Peptide Mass Fingerprinting an IonSource Tutorial’. [Online]. Available: http://www.ionsource.com/tutorial/
[135]
‘Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia’. [Online]. Available: https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics
[136]
‘About Mass Spec’. [Online]. Available: https://www.asms.org/about-mass-spectrometry
[137]
‘Mass Spectrometry - FTICR’. 2006 [Online]. Available: https://www.youtube.com/watch?v=a5aLlm9q-Xc
[138]
R. Aebersold and M. Mann, ‘Mass Spectrometry-Based Proteomics’, Nature, vol. 422, no. 6928, pp. 198–207, 2003, doi: 10.1038/nature01511.
[139]
B. Domon and R. Aebersold, ‘Mass Spectrometry and Protein Analysis’, Science, vol. 312, no. 5771, pp. 212–217, 2006, doi: 10.1126/science.1124619.
[140]
B. Canas, ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, vol. 4, no. 4, pp. 295–320, 2006, doi: 10.1093/bfgp/eli002.
[141]
B. F. Cravatt, G. M. Simon, and J. R. Yates III, ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, vol. 450, no. 7172, pp. 991–1000, 2007, doi: 10.1038/nature06525.
[142]
M. Bantscheff, M. Schirle, and E. al, ‘Quantitative Mass Spectrometry in Proteomics: A Critical Review’, Analytical and Bioanalytical Chemistry, vol. 389, no. 4, pp. 1017–1031, 2007, doi: 10.1007/s00216-007-1486-6.
[143]
K. M. Coombs and A. Berard, ‘Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells’, Journal Of Virology, vol. 84, no. 20, pp. 10888–10906, 2010, doi: 10.1128/JVI.00431-10.
[144]
B. Domon and R. Aebersold, ‘Options and Considerations When Selecting a Quantitative Proteomics Strategy’, Nature Biotechnology, vol. 28, no. 7, pp. 710–721, 2010, doi: 10.1038/nbt.1661.
[145]
T. Geiger and J. Cox, ‘Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue’, Nature Methods, vol. 7, no. 5, pp. 383–385, 2010, doi: 10.1038/nmeth.1446.
[146]
L. V. Bindschedler and R. Cramer, ‘Quantitative Plant Proteomics’, Proteomics, vol. 11, no. 4, pp. 756–775, 2011, doi: 10.1002/pmic.201000426.
[147]
M. Nikolov, C. Schmidt, and H. Urlaub, ‘Quantitative Mass Spectrometry-Based Proteomics: An Overview’, in Quantitative Methods in Proteomics, vol. Methods in molecular biology, New York: Humana Press, 2012, pp. 85–100.
[148]
A. Lesur and B. Domon, ‘Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics’, Proteomics, vol. 15, no. 5–6, pp. 880–890, 2015, doi: 10.1002/pmic.201400450.
[149]
M. Larance and A. I. Lamond, ‘Multidimensional Proteomics for Cell Biology’, Nature Reviews Molecular Cell Biology, vol. 16, no. 5, pp. 269–280, 2015, doi: 10.1038/nrm3970.
[150]
B. Canas, ‘Mass Spectrometry Technologies for Proteomics’, Briefings in Functional Genomics and Proteomics, vol. 4, no. 4, pp. 295–320, 2006, doi: 10.1093/bfgp/eli002.
[151]
J. Cox and M. Mann, ‘Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology’, Annual Review of Biochemistry, vol. 80, no. 1, pp. 273–299, 2011, doi: 10.1146/annurev-biochem-061308-093216.
[152]
L. V. Bindschedler and R. Cramer, ‘Quantitative Plant Proteomics’, Proteomics, vol. 11, no. 4, pp. 756–775, 2011, doi: 10.1002/pmic.201000426.
[153]
M. Nikolov, C. Schmidt, and H. Urlaub, ‘Quantitative Mass Spectrometry-Based Proteomics: An Overview’, in Quantitative Methods in Proteomics, vol. Methods in molecular biology, New York: Humana Press, 2012, pp. 85–100.
[154]
T. Geiger and A. Wehner, ‘Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins’, Molecular & Cellular Proteomics, vol. 11, no. 3, 2012, doi: 10.1074/mcp.M111.014050. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316730/
[155]
X. Chen and L. Sun, ‘Amino Acid-Coded Tagging Approaches in Quantitative Proteomics’, Expert Review of Proteomics, vol. 4, no. 1, pp. 25–37, 2007, doi: 10.1586/14789450.4.1.25.
[156]
X. Han, A. Aslanian, and J. R. Yates, ‘Mass Spectrometry for Proteomics’, Current Opinion in Chemical Biology, vol. 12, no. 5, pp. 483–490, 2008, doi: 10.1016/j.cbpa.2008.07.024.
[157]
C. Ansong and S. O. Purvine, ‘Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation’, Briefings in Functional Genomics and Proteomics, vol. 7, no. 1, pp. 50–62, 2008, doi: 10.1093/bfgp/eln010.
[158]
T. B. Schreiber and N. Mausbacher, ‘An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling’, Molecular & Cellular Proteomics, vol. 9, no. 6, pp. 1047–1062, 2010, doi: 10.1074/mcp.M900486-MCP200. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877970/
[159]
B. Macek, M. Mann, and J. V. Olsen, ‘Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications’, Annual Review of Pharmacology and Toxicology, vol. 49, no. 1, pp. 199–221, 2009, doi: 10.1146/annurev.pharmtox.011008.145606.
[160]
K. Engholm-Keller and P. Birck, ‘TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC’, Journal of Proteomics, vol. 75, no. 18, pp. 5749–5761, 2012, doi: 10.1016/j.jprot.2012.08.007.
[161]
K. Engholm-Keller and M. R. Larsen, ‘Technologies and Challenges in Large-Scale Phosphoproteomics’, Proteomics, vol. 13, no. 6, pp. 910–931, 2013, doi: 10.1002/pmic.201200484.
[162]
A. M. Palumbo and S. A. Smith, ‘Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis’, Mass Spectrometry Reviews, vol. 30, no. 4, pp. 600–625, 2011, doi: 10.1002/mas.20310.
[163]
C. L. Nilsson, ‘Advances in Quantitative Phosphoproteomics’, Analytical Chemistry, vol. 84, no. 2, pp. 735–746, 2012, doi: 10.1021/ac202877y.
[164]
K. M. Coombs and A. Berard, ‘Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells’, Journal Of Virology, vol. 84, no. 20, pp. 10888–10906, 2010, doi: 10.1128/JVI.00431-10.
[165]
B. Suter, S. Kittanakom, and I. Stagljar, ‘Two-Hybrid Technologies in Proteomics Research’, Current Opinion in Biotechnology, vol. 19, no. 4, pp. 316–323, 2008, doi: 10.1016/j.copbio.2008.06.005.
[166]
S. V. Rajagopala, P. Sikorski, J. H. Caufield, A. Tovchigrechko, and P. Uetz, ‘Studying Protein Complexes by the Yeast Two-Hybrid System’, Methods, vol. 58, no. 4, pp. 392–399, 2012, doi: 10.1016/j.ymeth.2012.07.015.
[167]
J. Petschnigg, J. Snider, and I. Stagljar, ‘Interactive Proteomics Research Technologies: Recent Applications and Advances’, Current Opinion in Biotechnology, vol. 22, no. 1, pp. 50–58, 2011, doi: 10.1016/j.copbio.2010.09.001.
[168]
J.-F. Rual and K. Venkatesan, ‘Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network’, Nature, vol. 437, no. 7062, pp. 1173–1178, 2005, doi: 10.1038/nature04209.
[169]
A.-L. Steckelberg, V. Boehm, A. M. Gromadzka, and N. H. Gehring, ‘CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly’, Cell Reports, vol. 2, no. 3, pp. 454–461, 2012, doi: 10.1016/j.celrep.2012.08.017.
[170]
O. Puig and F. Caspary, ‘The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification’, Methods, vol. 24, no. 3, pp. 218–229, 2001, doi: 10.1006/meth.2001.1183.
[171]
T. E. Thingholm and O. N. Jensen, ‘SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides’, Molecular & Cellular Proteomics: Mcp, vol. 7, no. 4, pp. 661–671, 2008, doi: 10.1074/mcp.M700362-MCP200.
[172]
J. J. Benschop and S. Mohammed, ‘Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis’, Molecular & Cellular Proteomics : Mcp, vol. 6, no. 7, pp. 1198–1214, 2007, doi: 10.1074/mcp.M600429-MCP200.
[173]
R. Ummanni, F. Mundt, and S. Balabanov, ‘Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform’, PLoS ONE, vol. 6, no. 2, 2011, doi: 10.1371/journal.pone.0016833.
[174]
L. J. Foster, C. L. De Hoog, and M. Mann, ‘Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors’, Proceedings Of The National Academy Of Sciences Of The United States Of America, vol. 100, no. 10, pp. 5813–5818, 2003 [Online]. Available: http://www.jstor.org/stable/3147499
[175]
S. V. Rajagopala, P. Sikorski, J. H. Caufield, A. Tovchigrechko, and P. Uetz, ‘Studying Protein Complexes by the Yeast Two-Hybrid System’, Methods, vol. 58, no. 4, pp. 392–399, 2012, doi: 10.1016/j.ymeth.2012.07.015.
[176]
J. Petschnigg, J. Snider, and I. Stagljar, ‘Interactive Proteomics Research Technologies: Recent Applications and Advances’, Current Opinion in Biotechnology, vol. 22, no. 1, pp. 50–58, 2011, doi: 10.1016/j.copbio.2010.09.001.
[177]
A.-L. Steckelberg, V. Boehm, A. M. Gromadzka, and N. H. Gehring, ‘CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly’, Cell Reports, vol. 2, no. 3, pp. 454–461, 2012, doi: 10.1016/j.celrep.2012.08.017.
[178]
B. Suter, S. Kittanakom, and I. Stagljar, ‘Two-Hybrid Technologies in Proteomics Research’, Current Opinion in Biotechnology, vol. 19, no. 4, pp. 316–323, 2008, doi: 10.1016/j.copbio.2008.06.005.
[179]
J.-F. Rual and K. Venkatesan, ‘Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network’, Nature, vol. 437, no. 7062, pp. 1173–1178, 2005, doi: 10.1038/nature04209.
[180]
W.-J. Zhang, C. Pedersen, and E. al, ‘Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c’, Molecular Plant Pathology, vol. 13, no. 9, pp. 1110–1119, 2012, doi: 10.1111/j.1364-3703.2012.00820.x.
[181]
C. H. Ahrens, E. Brunner, and E. al, ‘Generating and Navigating Proteome Maps Using Mass Spectrometry’, Nature Reviews Molecular Cell Biology, vol. 11, no. 11, pp. 789–801, 2010, doi: 10.1038/nrm2973.
[182]
J. Cox and M. Mann, ‘Is Proteomics the New Genomics?’, Cell, vol. 130, no. 3, pp. 395–398, 2007, doi: 10.1016/j.cell.2007.07.032.
[183]
B. F. Cravatt, G. M. Simon, and J. R. Yates III, ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, vol. 450, no. 7172, pp. 991–1000, 2007, doi: 10.1038/nature06525.
[184]
C. Choudhary and M. Mann, ‘Decoding Signalling Networks by Mass Spectrometry-Based Proteomics’, Nature Reviews Molecular Cell Biology, vol. 11, no. 6, pp. 427–439, 2010, doi: 10.1038/nrm2900.
[185]
B. Domon and R. Aebersold, ‘Options and Considerations When Selecting a Quantitative Proteomics Strategy’, Nature Biotechnology, vol. 28, no. 7, pp. 710–721, 2010, doi: 10.1038/nbt.1661.
[186]
L. J. Foster and C. L. de Hoog, ‘A Mammalian Organelle Map by Protein Correlation Profiling’, Cell, vol. 125, no. 1, pp. 187–199, 2006, doi: 10.1016/j.cell.2006.03.022.
[187]
J. V. Olsen, M. Vermeulen, and E. al, ‘Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis’, Science Signalling, vol. 3, no. 104, 2010 [Online]. Available: http://stke.sciencemag.org/content/3/104/ra3
[188]
J. M. Keck and M. H. Jones, ‘A Cell Cycle Phosphoproteome of the Yeast Centrosome’, Science, vol. 332, no. 6037, pp. 1557–1561, 2011, doi: 10.1126/science.1205193.
[189]
A. Santamaria and B. Wang, ‘The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle’, Molecular & Cellular Proteomics, vol. 10, no. 1, p. M110.004457-M110.004457, 2011, doi: 10.1074/mcp.M110.004457.
[190]
C. Pan, J. V. Olsen, H. Daub, and M. Mann, ‘Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics’, Molecular & Cellular Proteomics, vol. 8, no. 12, pp. 2796–2808, 2009, doi: 10.1074/mcp.M900285-MCP200.
[191]
N. Bisson and D. A. James, ‘Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor’, Nature Biotechnology, vol. 29, no. 7, pp. 653–658, 2011, doi: 10.1038/nbt.1905.
[192]
Y. Liu and R. Aebersold, ‘The Interdependence of Transcript and Protein Abundance: New Data-New Complexities’, Molecular Systems Biology, vol. 12, no. 1, pp. 856–856, 2016, doi: 10.15252/msb.20156720.
[193]
A. Leitner, M. Faini, F. Stengel, and R. Aebersold, ‘Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines’, Trends in Biochemical Sciences, vol. 41, no. 1, pp. 20–32, 2016, doi: 10.1016/j.tibs.2015.10.008.
[194]
H. A. Ebhardt, A. Root, C. Sander, and R. Aebersold, ‘Applications of Targeted Proteomics in Systems Biology and Translational Medicine’, Proteomics, vol. 15, no. 18, pp. 3193–3208, 2015, doi: 10.1002/pmic.201500004.
[195]
R. Aebersold and M. Mann, ‘Mass Spectrometry-Based Proteomics’, Nature, vol. 422, no. 6928, pp. 198–207, 2003, doi: 10.1038/nature01511.
[196]
J. Cox and M. Mann, ‘Is Proteomics the New Genomics?’, Cell, vol. 130, no. 3, pp. 395–398, 2007, doi: 10.1016/j.cell.2007.07.032.
[197]
B. F. Cravatt, G. M. Simon, and J. R. Yates III, ‘The Biological Impact of Mass-Spectrometry-Based Proteomics’, Nature, vol. 450, no. 7172, pp. 991–1000, 2007, doi: 10.1038/nature06525.
[198]
M. Gstaiger and R. Aebersold, ‘Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology’, Nature Reviews Genetics, vol. 10, no. 9, pp. 617–627, 2009, doi: 10.1038/nrg2633.
[199]
H. Steen and M. Mann, ‘The ABC’s (And XYZ’s) of Peptide Sequencing’, Nature Reviews Molecular Cell Biology, vol. 5, no. 9, pp. 699–711, 2004, doi: 10.1038/nrm1468.
[200]
Gary Siuzdak, The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr, 2003.
[201]
‘What is Mass Spectrometry?’ [Online]. Available: https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec