About Mass Spec. (n.d.). https://www.asms.org/about-mass-spectrometry
Aebersold, R. (2008). Quantitative Proteomics. https://hstalks.com/t/949/quantitative-proteomics/
Aebersold, R., & Mann, M. (2003a). Mass Spectrometry-Based Proteomics. Nature, 422(6928), 198–207. https://doi.org/10.1038/nature01511
Aebersold, R., & Mann, M. (2003b). Mass Spectrometry-Based Proteomics. Nature, 422(6928), 198–207. https://doi.org/10.1038/nature01511
Aebersold, R., & Mann, M. (2003c). Mass Spectrometry-Based Proteomics. Nature, 422(6928), 198–207. https://doi.org/10.1038/nature01511
Aebersold, R., & Mann, M. (2003d). Mass Spectrometry-Based Proteomics. Nature, 422(6928), 198–207. https://doi.org/10.1038/nature01511
Ahn, N. G., Shabb, J. B., Old, W. M., & Resing, K. A. (2007). Achieving In-Depth Proteomics Profiling by Mass Spectrometry. ACS Chemical Biology, 2(1), 39–52. https://doi.org/10.1021/cb600357d
Ahrens, C. H., Brunner, E., & al, E. (2010). Generating and Navigating Proteome Maps Using Mass Spectrometry. Nature Reviews Molecular Cell Biology, 11(11), 789–801. https://doi.org/10.1038/nrm2973
Aloy, P., & Russell, R. B. (2005a). Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters, 579(8), 1854–1858. https://doi.org/10.1016/j.febslet.2005.02.014
Aloy, P., & Russell, R. B. (2005b). Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters, 579(8), 1854–1858. https://doi.org/10.1016/j.febslet.2005.02.014
Altschul, S. F., Boguski, M. S., Gish, W., & Wootton, J. C. (1994). Issues in Searching Molecular Sequence Databases. Nature Genetics, 6(2), 119–129.
Amaral, A. J., & Megens, H.-J. (2009). Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome. BMC Genomics, 10(1). https://doi.org/10.1186/1471-2164-10-374
Ansong, C., & Purvine, S. O. (2008a). Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics, 7(1), 50–62. https://doi.org/10.1093/bfgp/eln010
Ansong, C., & Purvine, S. O. (2008b). Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics, 7(1), 50–62. https://doi.org/10.1093/bfgp/eln010
Apweiler, R., & Attwood, T. K. (2001). The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Nucleic Acids Research, 29(1), 37–40. https://doi.org/10.1093/nar/29.1.37
Ashcroft, D. A. E. (n.d.). An Introduction to Mass Spectrometry. http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm
Baker, D., & Sali, A. (2001). Protein Structure Prediction and Structural Genomics. Science, 294(5540), 93–96. https://doi.org/10.1126/science.1065659
Balog, J., & Sasi-Szabo, L. (2013). Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Science Translational Medicine, 5(194), 194ra93-194ra93. https://doi.org/10.1126/scitranslmed.3005623
Bantscheff, M., Schirle, M., & al, E. (2007). Quantitative Mass Spectrometry in Proteomics: A Critical Review. Analytical and Bioanalytical Chemistry, 389(4), 1017–1031. https://doi.org/10.1007/s00216-007-1486-6
Benschop, J. J., & Mohammed, S. (2007). Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular & Cellular Proteomics : Mcp, 6(7), 1198–1214. https://doi.org/10.1074/mcp.M600429-MCP200
Bindschedler, L. V., & Cramer, R. (2011a). Quantitative Plant Proteomics. Proteomics, 11(4), 756–775. https://doi.org/10.1002/pmic.201000426
Bindschedler, L. V., & Cramer, R. (2011b). Quantitative Plant Proteomics. Proteomics, 11(4), 756–775. https://doi.org/10.1002/pmic.201000426
Bisson, N., & James, D. A. (2011). Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor. Nature Biotechnology, 29(7), 653–658. https://doi.org/10.1038/nbt.1905
Boersema, P. J., Kahraman, A., & Picotti, P. (2015). Proteomics Beyond Large-Scale Protein Expression Analysis. Current Opinion in Biotechnology, 34, 162–170. https://doi.org/10.1016/j.copbio.2015.01.005
Bork, P., & Jensen, L. J. (2004a). Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology, 14(3), 292–299. https://doi.org/10.1016/j.sbi.2004.05.003
Bork, P., & Jensen, L. J. (2004b). Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology, 14(3), 292–299. https://doi.org/10.1016/j.sbi.2004.05.003
Brazma, A., & Sarkans, U. (2007). Gene Expression Databases. https://doi.org/10.1002/9780470015902.a0005248.pub2
Bruggeman, F. J., & Westerhoff, H. V. (2007a). The Nature of Systems Biology. Trends in Microbiology, 15(1), 45–50. https://doi.org/10.1016/j.tim.2006.11.003
Bruggeman, F. J., & Westerhoff, H. V. (2007b). The Nature of Systems Biology. Trends in Microbiology, 15(1), 45–50. https://doi.org/10.1016/j.tim.2006.11.003
Canas, B. (2006a). Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics, 4(4), 295–320. https://doi.org/10.1093/bfgp/eli002
Canas, B. (2006b). Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics, 4(4), 295–320. https://doi.org/10.1093/bfgp/eli002
Canas, B. (2006c). Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics, 4(4), 295–320. https://doi.org/10.1093/bfgp/eli002
Canas, B. (2006d). Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics, 4(4), 295–320. https://doi.org/10.1093/bfgp/eli002
Center for Metabolomics and Mass Spectrometry | Scripps Research. (n.d.). https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html
Chen, X., & Sun, L. (2007a). Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics, 4(1), 25–37. https://doi.org/10.1586/14789450.4.1.25
Chen, X., & Sun, L. (2007b). Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics, 4(1), 25–37. https://doi.org/10.1586/14789450.4.1.25
Choudhary, C., & Mann, M. (2010a). Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology, 11(6), 427–439. https://doi.org/10.1038/nrm2900
Choudhary, C., & Mann, M. (2010b). Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology, 11(6), 427–439. https://doi.org/10.1038/nrm2900
Coombs, K. M., & Berard, A. (2010a). Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology, 84(20), 10888–10906. https://doi.org/10.1128/JVI.00431-10
Coombs, K. M., & Berard, A. (2010b). Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology, 84(20), 10888–10906. https://doi.org/10.1128/JVI.00431-10
Cox, J., & Mann, M. (2007a). Is Proteomics the New Genomics? Cell, 130(3), 395–398. https://doi.org/10.1016/j.cell.2007.07.032
Cox, J., & Mann, M. (2007b). Is Proteomics the New Genomics? Cell, 130(3), 395–398. https://doi.org/10.1016/j.cell.2007.07.032
Cox, J., & Mann, M. (2011a). Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry, 80(1), 273–299. https://doi.org/10.1146/annurev-biochem-061308-093216
Cox, J., & Mann, M. (2011b). Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry, 80(1), 273–299. https://doi.org/10.1146/annurev-biochem-061308-093216
Cravatt, B. F., Simon, G. M., & Yates III, J. R. (2007a). The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature, 450(7172), 991–1000. https://doi.org/10.1038/nature06525
Cravatt, B. F., Simon, G. M., & Yates III, J. R. (2007b). The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature, 450(7172), 991–1000. https://doi.org/10.1038/nature06525
Cravatt, B. F., Simon, G. M., & Yates III, J. R. (2007c). The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature, 450(7172), 991–1000. https://doi.org/10.1038/nature06525
Cravatt, B. F., Simon, G. M., & Yates III, J. R. (2007d). The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature, 450(7172), 991–1000. https://doi.org/10.1038/nature06525
Cravatt, B. F., Simon, G. M., & Yates III, J. R. (2007e). The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature, 450(7172), 991–1000. https://doi.org/10.1038/nature06525
Danial, N. N., Gramm, C. F., & al, E. (2003). BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis. Nature, 424(6951), 952–956. https://doi.org/10.1038/nature01825
Devoto, A., & Turner, J. G. (2005a). Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum, 123(2), 161–172. https://doi.org/10.1111/j.1399-3054.2004.00418.x
Devoto, A., & Turner, J. G. (2005b). Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum, 123(2), 161–172. https://doi.org/10.1111/j.1399-3054.2004.00418.x
Domon, B., & Aebersold, R. (2006a). Mass Spectrometry and Protein Analysis. Science, 312(5771), 212–217. https://doi.org/10.1126/science.1124619
Domon, B., & Aebersold, R. (2006b). Mass Spectrometry and Protein Analysis. Science, 312(5771), 212–217. https://doi.org/10.1126/science.1124619
Domon, B., & Aebersold, R. (2006c). Mass Spectrometry and Protein Analysis. Science, 312(5771), 212–217. https://doi.org/10.1126/science.1124619
Domon, B., & Aebersold, R. (2010a). Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology, 28(7), 710–721. https://doi.org/10.1038/nbt.1661
Domon, B., & Aebersold, R. (2010b). Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology, 28(7), 710–721. https://doi.org/10.1038/nbt.1661
Domon, B., & Aebersold, R. (2010c). Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology, 28(7), 710–721. https://doi.org/10.1038/nbt.1661
E. Nicolas, F., Lopez-Gomollon, S., F. Lopez-Martinez, A., & Dalmay, T. (2011). Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery, 6(1), 94–105. https://doi.org/10.2174/157489211793980033
Eamens, A., & Wang, M.-B. (2008). RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology, 147(2), 456–468. http://www.jstor.org/stable/40066045
Ebhardt, H. A., Root, A., Sander, C., & Aebersold, R. (2015). Applications of Targeted Proteomics in Systems Biology and Translational Medicine. Proteomics, 15(18), 3193–3208. https://doi.org/10.1002/pmic.201500004
Engholm-Keller, K., & Birck, P. (2012). TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC. Journal of Proteomics, 75(18), 5749–5761. https://doi.org/10.1016/j.jprot.2012.08.007
Engholm-Keller, K., & Larsen, M. R. (2013). Technologies and Challenges in Large-Scale Phosphoproteomics. Proteomics, 13(6), 910–931. https://doi.org/10.1002/pmic.201200484
Foster, L. J., & de Hoog, C. L. (2006a). A Mammalian Organelle Map by Protein Correlation Profiling. Cell, 125(1), 187–199. https://doi.org/10.1016/j.cell.2006.03.022
Foster, L. J., & de Hoog, C. L. (2006b). A Mammalian Organelle Map by Protein Correlation Profiling. Cell, 125(1), 187–199. https://doi.org/10.1016/j.cell.2006.03.022
Foster, L. J., De Hoog, C. L., & Mann, M. (2003). Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors. Proceedings Of The National Academy Of Sciences Of The United States Of America, 100(10), 5813–5818. http://www.jstor.org/stable/3147499
Gary Siuzdak. (2003a). The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr.
Gary Siuzdak. (2003b). The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr.
Gehring, W. J., & Ikeo, K. (1999a). Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics, 15(9), 371–377. https://doi.org/10.1016/S0168-9525(99)01776-X
Gehring, W. J., & Ikeo, K. (1999b). Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics, 15(9), 371–377. https://doi.org/10.1016/S0168-9525(99)01776-X
Geiger, T., & Cox, J. (2010). Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue. Nature Methods, 7(5), 383–385. https://doi.org/10.1038/nmeth.1446
Geiger, T., & Wehner, A. (2012a). Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics, 11(3). https://doi.org/10.1074/mcp.M111.014050
Geiger, T., & Wehner, A. (2012b). Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics, 11(3). https://doi.org/10.1074/mcp.M111.014050
Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals. (1996). Biological Chemistry Hoppe-Seyler, 377(10), 605–618. https://doi.org/10.1515/bchm3.1996.377.10.605
Goldsmith-Fischman, S., & Honig, B. (2003). Structural Genomics: Computational Methods for Structure Analysis. Protein Science, 12(9), 1813–1821. https://doi.org/10.1110/ps.0242903
Goljanek-Whysall, K., & Sweetman, D. (2011). Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology). Proceedings of the National Academy of Sciences of the United States, 108(29), 11936–11941. http://www.jstor.org/stable/27978927
Gstaiger, M., & Aebersold, R. (2009a). Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics, 10(9), 617–627. https://doi.org/10.1038/nrg2633
Gstaiger, M., & Aebersold, R. (2009b). Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics, 10(9), 617–627. https://doi.org/10.1038/nrg2633
Han, X., Aslanian, A., & Yates, J. R. (2008a). Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology, 12(5), 483–490. https://doi.org/10.1016/j.cbpa.2008.07.024
Han, X., Aslanian, A., & Yates, J. R. (2008b). Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology, 12(5), 483–490. https://doi.org/10.1016/j.cbpa.2008.07.024
Hannon, G. J. (2002). RNA Interference. Nature, 418(6894), 244–251. https://doi.org/10.1038/418244a
Harbison, C. T., Gordon, D. B., & Young, R. A. (2004a). Transcriptional Regulatory Code of a Eukaryotic Genome. Nature, 431(7004), 99–104. https://doi.org/10.1038/nature02800
Harbison, C. T., Gordon, D. B., & Young, R. A. (2004b). Transcriptional Regulatory Code of a Eukaryotic Genome. Nature, 431(7004), 99–104. https://doi.org/10.1038/nature02800
Hughes, T. R., & Marton, M. J. (2000). Functional Discovery via a Compendium of Expression Profiles. Cell, 102(1), 109–126. https://doi.org/10.1016/S0092-8674(00)00015-5
Ideker, T., Galitski, T., & Hood, L. (2001a). A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics, 2(1), 343–372. https://doi.org/10.1146/annurev.genom.2.1.343
Ideker, T., Galitski, T., & Hood, L. (2001b). A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics, 2(1), 343–372. https://doi.org/10.1146/annurev.genom.2.1.343
Jacque, J.-M., Triques, K., & Stevenson, M. (2002). Modulation of HIV-1 Replication by RNA Interference. Nature, 418(6896), 435–438. https://doi.org/10.1038/nature00896
Jen, C.-H., & Manfield, I. W. (2006a). The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal, 46(2), 336–348. https://doi.org/10.1111/j.1365-313X.2006.02681.x
Jen, C.-H., & Manfield, I. W. (2006b). The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal, 46(2), 336–348. https://doi.org/10.1111/j.1365-313X.2006.02681.x
Jensen, L. J., & Kuhn, M. (2009a). STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research, 37(Database), D412–D416. https://doi.org/10.1093/nar/gkn760
Jensen, L. J., & Kuhn, M. (2009b). STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research, 37(Database), D412–D416. https://doi.org/10.1093/nar/gkn760
Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science (New York, N.Y.), 316(5830), 1497–1502. https://doi.org/10.1126/science.1141319
Jung, J. W., & Lee, W. (2004). Structure-Based Functional Discovery of Proteins: Structural Proteomics. Journal of Biochemistry and Molecular Biology, 37(1), 28–34.
Katoh, M., & Kato, M. (2003). Comparative Genomics between Drosophila and Human [open access]. Genome Informatics, 14, 587–588. http://www.jsbi.org/pdfs/journal1/GIW03/GIW03P190.pdf
Keck, J. M., & Jones, M. H. (2011). A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science, 332(6037), 1557–1561. https://doi.org/10.1126/science.1205193
Kitano, H. (2002). Computational Systems Biology. Nature, 420(6912), 206–210. https://doi.org/10.1038/nature01254
Knight, H., & Knight, M. R. (2001a). Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science, 6(6), 262–267. https://doi.org/10.1016/S1360-1385(01)01946-X
Knight, H., & Knight, M. R. (2001b). Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science, 6(6), 262–267. https://doi.org/10.1016/S1360-1385(01)01946-X
Krogan, N. J., & Cagney, G. (2006a). Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature, 440(7084), 637–643. https://doi.org/10.1038/nature04670
Krogan, N. J., & Cagney, G. (2006b). Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature, 440(7084), 637–643. https://doi.org/10.1038/nature04670
Larance, M., & Lamond, A. I. (2015). Multidimensional Proteomics for Cell Biology. Nature Reviews Molecular Cell Biology, 16(5), 269–280. https://doi.org/10.1038/nrm3970
Latchman, D. S. (2005a). Transcriptional Gene Regulation in Eukaryotes. https://doi.org/10.1002/9780470015902.a0002322.pub2
Latchman, D. S. (2005b). Transcriptional Gene Regulation in Eukaryotes. https://doi.org/10.1002/9780470015902.a0002322.pub2
Latchman, D. S. (2007a). Transcription Factors. https://doi.org/10.1002/9780470015902.a0005278.pub2
Latchman, D. S. (2007b). Transcription Factors. https://doi.org/10.1002/9780470015902.a0005278.pub2
Legrain, P. (2006a). Protein-Protein Interaction Maps. Encyclopedia of Life Sciences. https://doi.org/10.1002/9780470015902.a0006205
Legrain, P. (2006b). Protein-Protein Interaction Maps. eLS. https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0006205
Leitner, A., Faini, M., Stengel, F., & Aebersold, R. (2016). Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences, 41(1), 20–32. https://doi.org/10.1016/j.tibs.2015.10.008
Lesur, A., & Domon, B. (2015). Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics. Proteomics, 15(5–6), 880–890. https://doi.org/10.1002/pmic.201400450
Liu, Y., & Aebersold, R. (2016). The Interdependence of Transcript and Protein Abundance: New Data-New Complexities. Molecular Systems Biology, 12(1), 856–856. https://doi.org/10.15252/msb.20156720
Macek, B., Mann, M., & Olsen, J. V. (2009). Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology, 49(1), 199–221. https://doi.org/10.1146/annurev.pharmtox.011008.145606
Makałowski, W., Shabardina, V., & Makałowska, I. (2018). Bioinformatics. In Encyclopedia of Life Sciences (pp. 1–9). Wiley Interscience. https://doi.org/10.1002/9780470015902.a0005247.pub3
Mansouri, A. (2005). Knockout and Knock-in Animals. https://doi.org/10.1038/npg.els.0003840
Mardis, E. R. (2007). ChIP-Seq: Welcome to the New Frontier. Nature Methods, 4(8), 613–614. https://doi.org/10.1038/nmeth0807-613
Mardis, E. R. (2008a). Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics, 9(1), 387–402. https://doi.org/10.1146/annurev.genom.9.081307.164359
Mardis, E. R. (2008b). The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics, 24(3), 133–141. https://doi.org/10.1016/j.tig.2007.12.007
Mass Spectrometry - FTICR. (2006). https://www.youtube.com/watch?v=a5aLlm9q-Xc
Mass Spectrometry Facility. (n.d.). http://www.chm.bris.ac.uk/ms/mshome.xhtml
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia. (n.d.). https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics
Massie, C. E., & Mills, I. G. (2008). ChIPping Away at Gene Regulation. EMBO Reports, 9(4), 337–343. https://doi.org/10.1038/embor.2008.44
Mathé, C., & Sagot, M.-F. (2002). Current Methods of Gene Prediction, Their Strengths and Weaknesses. Nucleic Acids Research, 30(19), 4103–4117. https://doi.org/10.1093/nar/gkf543
Matsuoka, S., & Ballif, B. A. (2007). ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science (New York, N.Y.), 316(5828), 1160–1166. http://www.jstor.org/stable/20036331
Matys, V., & Fricke, E. (2003a). TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research, 31(1), 374–378. https://doi.org/10.1093/nar/gkg108
Matys, V., & Fricke, E. (2003b). TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research, 31(1), 374–378. https://doi.org/10.1093/nar/gkg108
Metzker, M. L. (2005). Emerging Technologies in DNA Sequencing. Genome Research, 15(12), 1767–1776. https://doi.org/10.1101/gr.3770505
Meyer, P. (2006). Gene Silencing in Plants. https://doi.org/10.1002/9780470015902.a0002022.pub2
Mitchell, P. J., & Tjian, R. (1989a). Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science, 245(4916), 371–378. https://doi.org/10.1126/science.2667136
Mitchell, P. J., & Tjian, R. (1989b). Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science, 245(4916), 371–378. https://doi.org/10.1126/science.2667136
Murray, D., Doran, P., MacMathuna, P., & Moss, A. C. (2007). In Silico Gene Expression Analysis – an Overview. Molecular Cancer, 6(1). https://doi.org/10.1186/1476-4598-6-50
Nemhauser, J. L., Hong, F., & Chory, J. (2006a). Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell, 126(3), 467–475. https://doi.org/10.1016/j.cell.2006.05.050
Nemhauser, J. L., Hong, F., & Chory, J. (2006b). Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell, 126(3), 467–475. https://doi.org/10.1016/j.cell.2006.05.050
Nikolov, M., Schmidt, C., & Urlaub, H. (2012a). Quantitative Mass Spectrometry-Based Proteomics: An Overview. In Quantitative Methods in Proteomics: Vol. Methods in molecular biology (pp. 85–100). Humana Press.
Nikolov, M., Schmidt, C., & Urlaub, H. (2012b). Quantitative Mass Spectrometry-Based Proteomics: An Overview. In Quantitative Methods in Proteomics: Vol. Methods in molecular biology (pp. 85–100). Humana Press.
Nilsson, C. L. (2012). Advances in Quantitative Phosphoproteomics. Analytical Chemistry, 84(2), 735–746. https://doi.org/10.1021/ac202877y
Olsen, J. V., Blagoev, B., & al, E. (2006). Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell, 127(3), 635–648. https://doi.org/10.1016/j.cell.2006.09.026
Olsen, J. V., Vermeulen, M., & al, E. (2010a). Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling, 3(104). http://stke.sciencemag.org/content/3/104/ra3
Olsen, J. V., Vermeulen, M., & al, E. (2010b). Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling, 3(104). http://stke.sciencemag.org/content/3/104/ra3
Oltvai, Z. N. (2002). Systems Biology: Life’s Complexity Pyramid. Science, 298(5594), 763–764. https://doi.org/10.1126/science.1078563
Oltvai, Z. N., & Barabási, A.-L. (2002). Systems Biology. Life’s Complexity Pyramid. Science (New York, N.Y.), 298(5594), 763–764. https://doi.org/10.1126/science.1078563
Oppermann, F. S., Gnad, F., & al, E. (2009). Large-Scale Proteomics Analysis of the Human Kinome. Molecular & Cellular Proteomics, 8(7), 1751–1764. https://doi.org/10.1074/mcp.M800588-MCP200
Palumbo, A. M., & Smith, S. A. (2011). Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrometry Reviews, 30(4), 600–625. https://doi.org/10.1002/mas.20310
Pan, C., Olsen, J. V., Daub, H., & Mann, M. (2009a). Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics, 8(12), 2796–2808. https://doi.org/10.1074/mcp.M900285-MCP200
Pan, C., Olsen, J. V., Daub, H., & Mann, M. (2009b). Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics, 8(12), 2796–2808. https://doi.org/10.1074/mcp.M900285-MCP200
Pavy, N., & Leroy, P. (1999). Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences. Bioinformatics, 15(11), 887–899. https://doi.org/10.1093/bioinformatics/15.11.887
Peptide Mass Fingerprinting an IonSource Tutorial. (n.d.). http://www.ionsource.com/tutorial/
Petschnigg, J., Snider, J., & Stagljar, I. (2011a). Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology, 22(1), 50–58. https://doi.org/10.1016/j.copbio.2010.09.001
Petschnigg, J., Snider, J., & Stagljar, I. (2011b). Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology, 22(1), 50–58. https://doi.org/10.1016/j.copbio.2010.09.001
Pieroni, E., & de la Fuente van Bentem, S. (2008a). Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics, 8(4), 799–816. https://doi.org/10.1002/pmic.200700767
Pieroni, E., & de la Fuente van Bentem, S. (2008b). Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics, 8(4), 799–816. https://doi.org/10.1002/pmic.200700767
Proteomics Analysis Step by Step Tutorial Educative File. (n.d.). https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=97161
Puig, O., & Caspary, F. (2001). The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods, 24(3), 218–229. https://doi.org/10.1006/meth.2001.1183
Rajagopala, S. V., Sikorski, P., Caufield, J. H., Tovchigrechko, A., & Uetz, P. (2012a). Studying Protein Complexes by the Yeast Two-Hybrid System. Methods, 58(4), 392–399. https://doi.org/10.1016/j.ymeth.2012.07.015
Rajagopala, S. V., Sikorski, P., Caufield, J. H., Tovchigrechko, A., & Uetz, P. (2012b). Studying Protein Complexes by the Yeast Two-Hybrid System. Methods, 58(4), 392–399. https://doi.org/10.1016/j.ymeth.2012.07.015
Rank, D. R., & Hanzel, D. K. (2006). Microarrays: Use in Gene Identification. https://doi.org/10.1038/npg.els.0005952
Ren, B., & Dynlacht, B. D. (2003). Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Chromatin and Chromatin Remodeling Enzymes, Part B, 376, 304–315. https://doi.org/10.1016/S0076-6879(03)76020-0
Ren, B., & Robert, F. (2000). Genome-Wide Location and Function of DNA Binding Proteins. Science, 290(5500), 2306–2309. https://doi.org/10.1126/science.290.5500.2306
Rockett, J. C., & Dix, D. J. (2006). Gene Expression Networks. https://doi.org/10.1038/npg.els.0005280
Rual, J.-F., & Venkatesan, K. (2005a). Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature, 437(7062), 1173–1178. https://doi.org/10.1038/nature04209
Rual, J.-F., & Venkatesan, K. (2005b). Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature, 437(7062), 1173–1178. https://doi.org/10.1038/nature04209
Sakuma, Y., & Maruyama, K. (2006). Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States, 103(49), 18822–18827. https://doi.org/10.1073/pnas.0605639103
Santamaria, A., & Wang, B. (2011). The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular & Cellular Proteomics, 10(1), M110.004457-M110.004457. https://doi.org/10.1074/mcp.M110.004457
Schreiber, T. B., & Mausbacher, N. (2010). An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling. Molecular & Cellular Proteomics, 9(6), 1047–1062. https://doi.org/10.1074/mcp.M900486-MCP200
Semenza, G. L. (2005a). Transcription Factors and Human Disorders. https://doi.org/10.1038/npg.els.0005504
Semenza, G. L. (2005b). Transcription Factors and Human Disorders. https://doi.org/10.1038/npg.els.0005504
Silva, J. M., Hammond, S. M., & Hannon, G. J. (2002). RNA Interference: A Promising Approach to Antiviral Therapy? Trends in Molecular Medicine, 8(11), 505–508. https://doi.org/10.1016/S1471-4914(02)02421-8
Singh, K. (2002a). Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology, 5(5), 430–436. https://doi.org/10.1016/S1369-5266(02)00289-3
Singh, K. (2002b). Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology, 5(5), 430–436. https://doi.org/10.1016/S1369-5266(02)00289-3
Smith, R. S., & Gutierrez-Arcelus, M. (2008). Structural Diversity of the Human Genome and Disease Susceptibility. https://doi.org/10.1002/9780470015902.a0020764
Sonnhammer, E. L., & Eddy, S. R. (1998). Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains. Nucleic Acids Research, 26(1), 320–322. https://doi.org/10.1093/nar/26.1.320
Soppe, W. J. J., Jacobsen, S. E., & al, E. (2000). The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell, 6(4), 791–802. https://doi.org/10.1016/S1097-2765(05)00090-0
Steckelberg, A.-L., Boehm, V., Gromadzka, A. M., & Gehring, N. H. (2012a). CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports, 2(3), 454–461. https://doi.org/10.1016/j.celrep.2012.08.017
Steckelberg, A.-L., Boehm, V., Gromadzka, A. M., & Gehring, N. H. (2012b). CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports, 2(3), 454–461. https://doi.org/10.1016/j.celrep.2012.08.017
Steen, H., & Mann, M. (2004). The ABC’s (And XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology, 5(9), 699–711. https://doi.org/10.1038/nrm1468
Stubbs, A. P., Van Yper, S. J. L., & van der Spek, P. J. (2008). Microarray Bioinformatics. https://doi.org/10.1002/9780470015902.a0005957.pub2
Suter, B., Kittanakom, S., & Stagljar, I. (2008a). Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology, 19(4), 316–323. https://doi.org/10.1016/j.copbio.2008.06.005
Suter, B., Kittanakom, S., & Stagljar, I. (2008b). Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology, 19(4), 316–323. https://doi.org/10.1016/j.copbio.2008.06.005
Thingholm, T. E., & Jensen, O. N. (2008). SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics: Mcp, 7(4), 661–671. https://doi.org/10.1074/mcp.M700362-MCP200
Tohge, T., & Fernie, A. R. (2012). Co-Expression and Co-Responses: Within and Beyond Transcription. Frontiers in Plant Science, 3. https://doi.org/10.3389/fpls.2012.00248
Tuschl, T. (2003). Functional Genomics: RNA Sets the Standard. Nature, 421(6920), 220–221. https://doi.org/10.1038/421220a
Tyson, J. J., Chen, K., & Novak, B. (2001a). Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology, 2(12), 908–916. https://doi.org/10.1038/35103078
Tyson, J. J., Chen, K., & Novak, B. (2001b). Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology, 2(12), 908–916. https://doi.org/10.1038/35103078
Ummanni, R., Mundt, F., & Balabanov, S. (2011). Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0016833
Von Mering, C., & Jensen, L. J. (2005a). STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research, 33(Database issue), D433–D437. https://doi.org/10.1093/nar/gki005
Von Mering, C., & Jensen, L. J. (2005b). STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research, 33(Database issue), D433–D437. https://doi.org/10.1093/nar/gki005
Weigel, D., & Ahn, J. H. (2000). Activation Tagging in Arabidopsis. Plant Physiology, 122(4), 1003–1013. https://doi.org/10.1038/npg.els.0005280
What is Mass Spectrometry? (n.d.). https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec
Yates, J. R., & Link, A. J. (1999). Direct Analysis of Protein Complexes Using Mass Spectrometry. Nature Biotechnology, 17(7), 676–682. https://doi.org/10.1038/10890
Zerbino, D. R., Paten, B., & Haussler, D. (2012). Integrating Genomes. Science, 336(6078), 179–182. https://doi.org/10.1126/science.1216830
Zhang, W.-J., Pedersen, C., & al, E. (2012). Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c. Molecular Plant Pathology, 13(9), 1110–1119. https://doi.org/10.1111/j.1364-3703.2012.00820.x
Zhu, J.-K. (2002a). Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology, 53(1), 247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
Zhu, J.-K. (2002b). Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology, 53(1), 247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
Zilberman, D., & Henikoff, S. (2005). Epigenetic Inheritance in Arabidopsis: Selective Silence. Current Opinion in Genetics & Development, 15(5), 557–562. https://doi.org/10.1016/j.gde.2005.07.002
Zvelebil, M. J., & Baum, J. O. (2008a). Analyzing Structure-Function Relationships. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008b). Dealing with Databases. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008c). Gene Detection and Genome Annotation. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008d). Predicting Secondary Structures. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008e). Protein Structure. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008f). Proteome and Gene Expression Analysis. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008g). Revealing Genome Features. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008h). Systems Biology. In Understanding Bioinformatics. Garland Science.
Zvelebil, M. J., & Baum, J. O. (2008i). Understanding Bioinformatics. Garland Science.