1.
Zvelebil MJ, Baum JO. Understanding Bioinformatics. New York: Garland Science; 2008.
2.
Zvelebil MJ, Baum JO. Protein Structure. In: Understanding Bioinformatics. New York: Garland Science; 2008.
3.
Zvelebil MJ, Baum JO. Dealing with Databases. In: Understanding Bioinformatics. New York: Garland Science; 2008.
4.
Zvelebil MJ, Baum JO. Revealing Genome Features. In: Understanding Bioinformatics. New York: Garland Science; 2008.
5.
Zvelebil MJ, Baum JO. Gene Detection and Genome Annotation. In: Understanding Bioinformatics. New York: Garland Science; 2008.
6.
Zvelebil MJ, Baum JO. Predicting Secondary Structures. In: Understanding Bioinformatics. New York: Garland Science; 2008.
7.
Zvelebil MJ, Baum JO. Analyzing Structure-Function Relationships. In: Understanding Bioinformatics. New York: Garland Science; 2008.
8.
Zvelebil MJ, Baum JO. Proteome and Gene Expression Analysis. In: Understanding Bioinformatics. New York: Garland Science; 2008.
9.
Zvelebil MJ, Baum JO. Systems Biology. In: Understanding Bioinformatics. New York: Garland Science; 2008.
10.
Baker D, Sali A. Protein Structure Prediction and Structural Genomics. Science. 2001;294(5540):93–6.
11.
Hughes TR, Marton MJ. Functional Discovery via a Compendium of Expression Profiles. Cell. 2000;102(1):109–26.
12.
Goldsmith-Fischman S, Honig B. Structural Genomics: Computational Methods for Structure Analysis. Protein Science. 2003;12(9):1813–21.
13.
Jung JW, Lee W. Structure-Based Functional Discovery of Proteins: Structural Proteomics. Journal of Biochemistry and Molecular Biology. 2004;37(1):28–34.
14.
Smith RS, Gutierrez-Arcelus M. Structural Diversity of the Human Genome and Disease Susceptibility. 2008;
15.
Rockett JC, Dix DJ. Gene Expression Networks. 2006; Available from: https://doi.org/10.1038/npg.els.0005280
16.
Stubbs AP, Van Yper SJL, van der Spek PJ. Microarray Bioinformatics. 2008; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0005957.html
17.
Rank DR, Hanzel DK. Microarrays: Use in Gene Identification. 2006; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0005952.html
18.
Brazma A, Sarkans U. Gene Expression Databases. 2007; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0005248.html
19.
Yates JR, Link AJ. Direct Analysis of Protein Complexes Using Mass Spectrometry. Nature Biotechnology. 1999;17(7):676–82.
20.
Makałowski W, Shabardina V, Makałowska I. Bioinformatics. In: Encyclopedia of Life Sciences [Internet]. Wiley Interscience; 2018. p. 1–9. Available from: http://doi.wiley.com/10.1002/9780470015902.a0005247.pub3
21.
Altschul SF, Boguski MS, Gish W, Wootton JC. Issues in Searching Molecular Sequence Databases. Nature Genetics. 1994;6(2):119–29.
22.
Mathé C, Sagot MF. Current Methods of Gene Prediction, Their Strengths and Weaknesses. Nucleic Acids Research. 2002;30(19):4103–17.
23.
Sonnhammer EL, Eddy SR. Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains. Nucleic Acids Research. 1998;26(1):320–2.
24.
Apweiler R, Attwood TK. The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Nucleic Acids Research. 2001;29(1):37–40.
25.
Pavy N, Leroy P. Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences. Bioinformatics. 1999;15(11):887–99.
26.
Katoh M, Kato M. Comparative Genomics between Drosophila and Human [open access]. Genome Informatics [Internet]. 2003;14:587–8. Available from: http://www.jsbi.org/pdfs/journal1/GIW03/GIW03P190.pdf
27.
Tohge T, Fernie AR. Co-Expression and Co-Responses: Within and Beyond Transcription. Frontiers in Plant Science. 2012;3.
28.
Murray D, Doran P, MacMathuna P, Moss AC. In Silico Gene Expression Analysis – an Overview. Molecular Cancer. 2007;6(1).
29.
Sakuma Y, Maruyama K. Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States. 2006;103(49):18822–7.
30.
Zilberman D, Henikoff S. Epigenetic Inheritance in Arabidopsis: Selective Silence. Current Opinion in Genetics & Development. 2005;15(5):557–62.
31.
Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals. Biological Chemistry Hoppe-Seyler. 1996;377(10):605–18.
32.
Soppe WJJ, Jacobsen SE, al E. The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell. 2000;6(4):791–802.
33.
Weigel D, Ahn JH. Activation Tagging in Arabidopsis. Plant Physiology [Internet]. 2000;122(4):1003–13. Available from: https://doi.org/10.1038/npg.els.0005280
34.
Mansouri A. Knockout and Knock-in Animals. 2005; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0000991.html
35.
Goljanek-Whysall K, Sweetman D. Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology). Proceedings of the National Academy of Sciences of the United States [Internet]. 2011;108(29):11936–41. Available from: http://www.jstor.org/stable/27978927
36.
Eamens A, Wang MB. RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology [Internet]. 2008;147(2):456–68. Available from: http://www.jstor.org/stable/40066045
37.
E. Nicolas F, Lopez-Gomollon S, F. Lopez-Martinez A, Dalmay T. Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery. 2011;6(1):94–105.
38.
Hannon GJ. RNA Interference. Nature. 2002;418(6894):244–51.
39.
Tuschl T. Functional Genomics: RNA Sets the Standard. Nature. 2003;421(6920):220–1.
40.
Silva JM, Hammond SM, Hannon GJ. RNA Interference: A Promising Approach to Antiviral Therapy? Trends in Molecular Medicine. 2002;8(11):505–8.
41.
Meyer P. Gene Silencing in Plants. 2006; Available from: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0002022.pub2
42.
Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 Replication by RNA Interference. Nature. 2002;418(6896):435–8.
43.
Latchman DS. Transcription Factors. 2007; Available from: https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0005278.pub2
44.
Mitchell PJ, Tjian R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 1989;245(4916):371–8.
45.
Semenza GL. Transcription Factors and Human Disorders. 2005; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0005504.html
46.
Latchman DS. Transcriptional Gene Regulation in Eukaryotes. 2005;
47.
Gehring WJ, Ikeo K. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 1999;15(9):371–7.
48.
Knight H, Knight MR. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 2001;6(6):262–7.
49.
Zhu JK. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 2002;53(1):247–73.
50.
Singh K. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 2002;5(5):430–6.
51.
Devoto A, Turner JG. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 2005;123(2):161–72.
52.
Matys V, Fricke E. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 2003;31(1):374–8.
53.
Latchman DS. Transcription Factors. 2007; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0005278.html
54.
Mitchell PJ, Tjian R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 1989;245(4916):371–8.
55.
Semenza GL. Transcription Factors and Human Disorders. 2005; Available from: http://www.els.net/WileyCDA/ElsArticle/refId-a0005504.html
56.
Latchman DS. Transcriptional Gene Regulation in Eukaryotes. 2005;
57.
Gehring WJ, Ikeo K. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 1999;15(9):371–7.
58.
Knight H, Knight MR. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 2001;6(6):262–7.
59.
Zhu JK. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 2002;53(1):247–73.
60.
Singh K. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 2002;5(5):430–6.
61.
Devoto A, Turner JG. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 2005;123(2):161–72.
62.
Matys V, Fricke E. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 2003;31(1):374–8.
63.
Zerbino DR, Paten B, Haussler D. Integrating Genomes. Science. 2012;336(6078):179–82.
64.
Kitano H. Computational Systems Biology. Nature. 2002;420(6912):206–10.
65.
Ideker T, Galitski T, Hood L. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2001;2(1):343–72.
66.
Tyson JJ, Chen K, Novak B. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2001;2(12):908–16.
67.
Bruggeman FJ, Westerhoff HV. The Nature of Systems Biology. Trends in Microbiology. 2007;15(1):45–50.
68.
Aloy P, Russell RB. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 2005;579(8):1854–8.
69.
Harbison CT, Gordon DB, Young RA. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 2004;431(7004):99–104.
70.
Jen CH, Manfield IW. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 2006;46(2):336–48.
71.
Oltvai ZN, Barabási AL. Systems Biology. Life’s Complexity Pyramid. Science (New York, NY). 2002;298(5594):763–4.
72.
Nemhauser JL, Hong F, Chory J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 2006;126(3):467–75.
73.
Legrain P. Protein-Protein Interaction Maps. Encyclopedia of life sciences [Internet]. 2006; Available from: http://doi.wiley.com/10.1002/9780470015902.a0006205
74.
Krogan NJ, Cagney G. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 2006;440(7084):637–43.
75.
Von Mering C, Jensen LJ. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 2005;33(Database issue):D433–7.
76.
Pieroni E, de la Fuente van Bentem S. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 2008;8(4):799–816.
77.
Bork P, Jensen LJ. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 2004;14(3):292–9.
78.
Jensen LJ, Kuhn M. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 2009;37(Database):D412–6.
79.
Jen CH, Manfield IW. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 2006;46(2):336–48.
80.
Oltvai ZN. Systems Biology: Life’s Complexity Pyramid. Science. 2002;298(5594):763–4.
81.
Nemhauser JL, Hong F, Chory J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 2006;126(3):467–75.
82.
Legrain P. Protein-Protein Interaction Maps. eLS [Internet]. 2006; Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0006205
83.
Krogan NJ, Cagney G. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 2006;440(7084):637–43.
84.
Von Mering C, Jensen LJ. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 2005;33(Database issue):D433–7.
85.
Pieroni E, de la Fuente van Bentem S. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 2008;8(4):799–816.
86.
Bork P, Jensen LJ. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 2004;14(3):292–9.
87.
Jensen LJ, Kuhn M. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 2009;37(Database):D412–6.
88.
Massie CE, Mills IG. ChIPping Away at Gene Regulation. EMBO Reports. 2008;9(4):337–43.
89.
Harbison CT, Gordon DB, Young RA. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 2004;431(7004):99–104.
90.
Ren B, Dynlacht BD. Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Chromatin and Chromatin Remodeling Enzymes, Part B [Internet]. 2003;376:304–15. Available from: https://doi.org/10.1016/S0076-6879(03)76020-0
91.
Ren B, Robert F. Genome-Wide Location and Function of DNA Binding Proteins. Science. 2000;290(5500):2306–9.
92.
Mardis ER. ChIP-Seq: Welcome to the New Frontier. Nature Methods. 2007;4(8):613–4.
93.
Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science (New York, NY). 2007;316(5830):1497–502.
94.
Mardis ER. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics. 2008;9(1):387–402.
95.
Metzker ML. Emerging Technologies in DNA Sequencing. Genome Research. 2005;15(12):1767–76.
96.
Amaral AJ, Megens HJ. Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome. BMC Genomics. 2009;10(1).
97.
Mardis ER. The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics. 2008;24(3):133–41.
98.
Ideker T, Galitski T, Hood L. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2001;2(1):343–72.
99.
Tyson JJ, Chen K, Novak B. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2001;2(12):908–16.
100.
Bruggeman FJ, Westerhoff HV. The Nature of Systems Biology. Trends in Microbiology. 2007;15(1):45–50.
101.
Aloy P, Russell RB. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 2005;579(8):1854–8.
102.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991–1000.
103.
Choudhary C, Mann M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 2010;11(6):427–39.
104.
Domon B, Aebersold R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 2010;28(7):710–21.
105.
Foster LJ, de Hoog CL. A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 2006;125(1):187–99.
106.
Olsen JV, Blagoev B, al E. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell. 2006;127(3):635–48.
107.
Oppermann FS, Gnad F, al E. Large-Scale Proteomics Analysis of the Human Kinome. Molecular & Cellular Proteomics [Internet]. 2009;8(7):1751–64. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709199/
108.
Pan C, Olsen JV, Daub H, Mann M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 2009;8(12):2796–808.
109.
Olsen JV, Vermeulen M, al E. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling [Internet]. 2010;3(104). Available from: http://stke.sciencemag.org/content/3/104/ra3
110.
Matsuoka S, Ballif BA. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science (New York, NY) [Internet]. 2007;316(5828):1160–6. Available from: http://www.jstor.org/stable/20036331
111.
Danial NN, Gramm CF, al E. BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis. Nature. 2003;424(6951):952–6.
112.
Gstaiger M, Aebersold R. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 2009;10(9):617–27.
113.
Aebersold R. Quantitative Proteomics [Internet]. 2008. Available from: https://hstalks.com/t/949/quantitative-proteomics/
114.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198–207.
115.
Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 2006;312(5771):212–7.
116.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295–320.
117.
Gary Siuzdak. The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr; 2003.
118.
Proteomics Analysis Step by Step Tutorial Educative File [Internet]. Available from: https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=97161
119.
Balog J, Sasi-Szabo L. Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Science Translational Medicine. 2013;5(194):194ra93-194ra93.
120.
Boersema PJ, Kahraman A, Picotti P. Proteomics Beyond Large-Scale Protein Expression Analysis. Current Opinion in Biotechnology. 2015;34:162–70.
121.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198–207.
122.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295–320.
123.
Cox J, Mann M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 2011;80(1):273–99.
124.
Geiger T, Wehner A. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics [Internet]. 2012;11(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316730/
125.
Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 2006;312(5771):212–7.
126.
Ahn NG, Shabb JB, Old WM, Resing KA. Achieving In-Depth Proteomics Profiling by Mass Spectrometry. ACS Chemical Biology. 2007;2(1):39–52.
127.
Chen X, Sun L. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 2007;4(1):25–37.
128.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991–1000.
129.
Han X, Aslanian A, Yates JR. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 2008;12(5):483–90.
130.
Ansong C, Purvine SO. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 2008;7(1):50–62.
131.
Center for Metabolomics and Mass Spectrometry | Scripps Research [Internet]. Available from: https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html
132.
Mass Spectrometry Facility [Internet]. Available from: http://www.chm.bris.ac.uk/ms/mshome.xhtml
133.
Ashcroft DAE. An Introduction to Mass Spectrometry [Internet]. Available from: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm
134.
Peptide Mass Fingerprinting an IonSource Tutorial [Internet]. Available from: http://www.ionsource.com/tutorial/
135.
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia [Internet]. Available from: https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics
136.
About Mass Spec [Internet]. Available from: https://www.asms.org/about-mass-spectrometry
137.
Mass Spectrometry - FTICR [Internet]. 2006. Available from: https://www.youtube.com/watch?v=a5aLlm9q-Xc
138.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198–207.
139.
Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 2006;312(5771):212–7.
140.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295–320.
141.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991–1000.
142.
Bantscheff M, Schirle M, al E. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Analytical and Bioanalytical Chemistry. 2007;389(4):1017–31.
143.
Coombs KM, Berard A. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 2010;84(20):10888–906.
144.
Domon B, Aebersold R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 2010;28(7):710–21.
145.
Geiger T, Cox J. Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue. Nature Methods. 2010;7(5):383–5.
146.
Bindschedler LV, Cramer R. Quantitative Plant Proteomics. Proteomics. 2011;11(4):756–75.
147.
Nikolov M, Schmidt C, Urlaub H. Quantitative Mass Spectrometry-Based Proteomics: An Overview. In: Quantitative Methods in Proteomics. New York: Humana Press; 2012. p. 85–100.
148.
Lesur A, Domon B. Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics. Proteomics. 2015;15(5–6):880–90.
149.
Larance M, Lamond AI. Multidimensional Proteomics for Cell Biology. Nature Reviews Molecular Cell Biology. 2015;16(5):269–80.
150.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295–320.
151.
Cox J, Mann M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 2011;80(1):273–99.
152.
Bindschedler LV, Cramer R. Quantitative Plant Proteomics. Proteomics. 2011;11(4):756–75.
153.
Nikolov M, Schmidt C, Urlaub H. Quantitative Mass Spectrometry-Based Proteomics: An Overview. In: Quantitative Methods in Proteomics. New York: Humana Press; 2012. p. 85–100.
154.
Geiger T, Wehner A. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics [Internet]. 2012;11(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316730/
155.
Chen X, Sun L. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 2007;4(1):25–37.
156.
Han X, Aslanian A, Yates JR. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 2008;12(5):483–90.
157.
Ansong C, Purvine SO. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 2008;7(1):50–62.
158.
Schreiber TB, Mausbacher N. An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling. Molecular & Cellular Proteomics [Internet]. 2010;9(6):1047–62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877970/
159.
Macek B, Mann M, Olsen JV. Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology. 2009;49(1):199–221.
160.
Engholm-Keller K, Birck P. TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC. Journal of Proteomics. 2012;75(18):5749–61.
161.
Engholm-Keller K, Larsen MR. Technologies and Challenges in Large-Scale Phosphoproteomics. Proteomics. 2013;13(6):910–31.
162.
Palumbo AM, Smith SA. Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrometry Reviews. 2011;30(4):600–25.
163.
Nilsson CL. Advances in Quantitative Phosphoproteomics. Analytical Chemistry. 2012;84(2):735–46.
164.
Coombs KM, Berard A. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 2010;84(20):10888–906.
165.
Suter B, Kittanakom S, Stagljar I. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 2008;19(4):316–23.
166.
Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 2012;58(4):392–9.
167.
Petschnigg J, Snider J, Stagljar I. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 2011;22(1):50–8.
168.
Rual JF, Venkatesan K. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 2005;437(7062):1173–8.
169.
Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2012;2(3):454–61.
170.
Puig O, Caspary F. The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods. 2001;24(3):218–29.
171.
Thingholm TE, Jensen ON. SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics: Mcp. 2008;7(4):661–71.
172.
Benschop JJ, Mohammed S. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular & Cellular Proteomics : Mcp. 2007;6(7):1198–214.
173.
Ummanni R, Mundt F, Balabanov S. Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS ONE. 2011;6(2).
174.
Foster LJ, De Hoog CL, Mann M. Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors. Proceedings Of The National Academy Of Sciences Of The United States Of America [Internet]. 2003;100(10):5813–8. Available from: http://www.jstor.org/stable/3147499
175.
Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 2012;58(4):392–9.
176.
Petschnigg J, Snider J, Stagljar I. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 2011;22(1):50–8.
177.
Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2012;2(3):454–61.
178.
Suter B, Kittanakom S, Stagljar I. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 2008;19(4):316–23.
179.
Rual JF, Venkatesan K. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 2005;437(7062):1173–8.
180.
Zhang WJ, Pedersen C, al E. Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c. Molecular Plant Pathology. 2012;13(9):1110–9.
181.
Ahrens CH, Brunner E, al E. Generating and Navigating Proteome Maps Using Mass Spectrometry. Nature Reviews Molecular Cell Biology. 2010;11(11):789–801.
182.
Cox J, Mann M. Is Proteomics the New Genomics? Cell. 2007;130(3):395–8.
183.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991–1000.
184.
Choudhary C, Mann M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 2010;11(6):427–39.
185.
Domon B, Aebersold R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 2010;28(7):710–21.
186.
Foster LJ, de Hoog CL. A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 2006;125(1):187–99.
187.
Olsen JV, Vermeulen M, al E. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling [Internet]. 2010;3(104). Available from: http://stke.sciencemag.org/content/3/104/ra3
188.
Keck JM, Jones MH. A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science. 2011;332(6037):1557–61.
189.
Santamaria A, Wang B. The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular & Cellular Proteomics. 2011;10(1):M110.004457-M110.004457.
190.
Pan C, Olsen JV, Daub H, Mann M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 2009;8(12):2796–808.
191.
Bisson N, James DA. Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor. Nature Biotechnology. 2011;29(7):653–8.
192.
Liu Y, Aebersold R. The Interdependence of Transcript and Protein Abundance: New Data-New Complexities. Molecular Systems Biology. 2016;12(1):856–856.
193.
Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences. 2016;41(1):20–32.
194.
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of Targeted Proteomics in Systems Biology and Translational Medicine. Proteomics. 2015;15(18):3193–208.
195.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198–207.
196.
Cox J, Mann M. Is Proteomics the New Genomics? Cell. 2007;130(3):395–8.
197.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991–1000.
198.
Gstaiger M, Aebersold R. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 2009;10(9):617–27.
199.
Steen H, Mann M. The ABC’s (And XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology. 2004;5(9):699–711.
200.
Gary Siuzdak. The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr; 2003.
201.
What is Mass Spectrometry? [Internet]. Available from: https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec