[1]
About Mass Spec: https://www.asms.org/about-mass-spectrometry.
[2]
Aebersold, R. 2008. Quantitative Proteomics.
[3]
Aebersold, R. and Mann, M. 2003. Mass Spectrometry-Based Proteomics. Nature. 422, 6928 (2003), 198–207. DOI:https://doi.org/10.1038/nature01511.
[4]
Aebersold, R. and Mann, M. 2003. Mass Spectrometry-Based Proteomics. Nature. 422, 6928 (2003), 198–207. DOI:https://doi.org/10.1038/nature01511.
[5]
Aebersold, R. and Mann, M. 2003. Mass Spectrometry-Based Proteomics. Nature. 422, 6928 (2003), 198–207. DOI:https://doi.org/10.1038/nature01511.
[6]
Aebersold, R. and Mann, M. 2003. Mass Spectrometry-Based Proteomics. Nature. 422, 6928 (2003), 198–207. DOI:https://doi.org/10.1038/nature01511.
[7]
Ahn, N.G. et al. 2007. Achieving In-Depth Proteomics Profiling by Mass Spectrometry. ACS Chemical Biology. 2, 1 (2007), 39–52. DOI:https://doi.org/10.1021/cb600357d.
[8]
Ahrens, C.H. et al. 2010. Generating and Navigating Proteome Maps Using Mass Spectrometry. Nature Reviews Molecular Cell Biology. 11, 11 (2010), 789–801. DOI:https://doi.org/10.1038/nrm2973.
[9]
Aloy, P. and Russell, R.B. 2005. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 579, 8 (2005), 1854–1858. DOI:https://doi.org/10.1016/j.febslet.2005.02.014.
[10]
Aloy, P. and Russell, R.B. 2005. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 579, 8 (2005), 1854–1858. DOI:https://doi.org/10.1016/j.febslet.2005.02.014.
[11]
Altschul, S.F. et al. 1994. Issues in Searching Molecular Sequence Databases. Nature Genetics. 6, 2 (1994), 119–129.
[12]
Amaral, A.J. and Megens, H.-J. 2009. Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome. BMC Genomics. 10, 1 (2009). DOI:https://doi.org/10.1186/1471-2164-10-374.
[13]
An Introduction to Mass Spectrometry: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm.
[14]
Ansong, C. and Purvine, S.O. 2008. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 7, 1 (2008), 50–62. DOI:https://doi.org/10.1093/bfgp/eln010.
[15]
Ansong, C. and Purvine, S.O. 2008. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 7, 1 (2008), 50–62. DOI:https://doi.org/10.1093/bfgp/eln010.
[16]
Apweiler, R. and Attwood, T.K. 2001. The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Nucleic Acids Research. 29, 1 (2001), 37–40. DOI:https://doi.org/10.1093/nar/29.1.37.
[17]
Baker, D. and Sali, A. 2001. Protein Structure Prediction and Structural Genomics. Science. 294, 5540 (2001), 93–96. DOI:https://doi.org/10.1126/science.1065659.
[18]
Balog, J. and Sasi-Szabo, L. 2013. Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Science Translational Medicine. 5, 194 (2013), 194ra93-194ra93. DOI:https://doi.org/10.1126/scitranslmed.3005623.
[19]
Bantscheff, M. et al. 2007. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Analytical and Bioanalytical Chemistry. 389, 4 (2007), 1017–1031. DOI:https://doi.org/10.1007/s00216-007-1486-6.
[20]
Benschop, J.J. and Mohammed, S. 2007. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular & Cellular Proteomics : Mcp. 6, 7 (2007), 1198–1214. DOI:https://doi.org/10.1074/mcp.M600429-MCP200.
[21]
Bindschedler, L.V. and Cramer, R. 2011. Quantitative Plant Proteomics. Proteomics. 11, 4 (2011), 756–775. DOI:https://doi.org/10.1002/pmic.201000426.
[22]
Bindschedler, L.V. and Cramer, R. 2011. Quantitative Plant Proteomics. Proteomics. 11, 4 (2011), 756–775. DOI:https://doi.org/10.1002/pmic.201000426.
[23]
Bisson, N. and James, D.A. 2011. Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor. Nature Biotechnology. 29, 7 (2011), 653–658. DOI:https://doi.org/10.1038/nbt.1905.
[24]
Boersema, P.J. et al. 2015. Proteomics Beyond Large-Scale Protein Expression Analysis. Current Opinion in Biotechnology. 34, (2015), 162–170. DOI:https://doi.org/10.1016/j.copbio.2015.01.005.
[25]
Bork, P. and Jensen, L.J. 2004. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 14, 3 (2004), 292–299. DOI:https://doi.org/10.1016/j.sbi.2004.05.003.
[26]
Bork, P. and Jensen, L.J. 2004. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 14, 3 (2004), 292–299. DOI:https://doi.org/10.1016/j.sbi.2004.05.003.
[27]
Brazma, A. and Sarkans, U. 2007. Gene Expression Databases. (2007). DOI:https://doi.org/10.1002/9780470015902.a0005248.pub2.
[28]
Bruggeman, F.J. and Westerhoff, H.V. 2007. The Nature of Systems Biology. Trends in Microbiology. 15, 1 (2007), 45–50. DOI:https://doi.org/10.1016/j.tim.2006.11.003.
[29]
Bruggeman, F.J. and Westerhoff, H.V. 2007. The Nature of Systems Biology. Trends in Microbiology. 15, 1 (2007), 45–50. DOI:https://doi.org/10.1016/j.tim.2006.11.003.
[30]
Canas, B. 2006. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 4 (2006), 295–320. DOI:https://doi.org/10.1093/bfgp/eli002.
[31]
Canas, B. 2006. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 4 (2006), 295–320. DOI:https://doi.org/10.1093/bfgp/eli002.
[32]
Canas, B. 2006. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 4 (2006), 295–320. DOI:https://doi.org/10.1093/bfgp/eli002.
[33]
Canas, B. 2006. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 4 (2006), 295–320. DOI:https://doi.org/10.1093/bfgp/eli002.
[34]
Center for Metabolomics and Mass Spectrometry | Scripps Research: https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html.
[35]
Chen, X. and Sun, L. 2007. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 4, 1 (2007), 25–37. DOI:https://doi.org/10.1586/14789450.4.1.25.
[36]
Chen, X. and Sun, L. 2007. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 4, 1 (2007), 25–37. DOI:https://doi.org/10.1586/14789450.4.1.25.
[37]
Choudhary, C. and Mann, M. 2010. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 11, 6 (2010), 427–439. DOI:https://doi.org/10.1038/nrm2900.
[38]
Choudhary, C. and Mann, M. 2010. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 11, 6 (2010), 427–439. DOI:https://doi.org/10.1038/nrm2900.
[39]
Coombs, K.M. and Berard, A. 2010. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 84, 20 (2010), 10888–10906. DOI:https://doi.org/10.1128/JVI.00431-10.
[40]
Coombs, K.M. and Berard, A. 2010. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 84, 20 (2010), 10888–10906. DOI:https://doi.org/10.1128/JVI.00431-10.
[41]
Cox, J. and Mann, M. 2007. Is Proteomics the New Genomics? Cell. 130, 3 (2007), 395–398. DOI:https://doi.org/10.1016/j.cell.2007.07.032.
[42]
Cox, J. and Mann, M. 2007. Is Proteomics the New Genomics? Cell. 130, 3 (2007), 395–398. DOI:https://doi.org/10.1016/j.cell.2007.07.032.
[43]
Cox, J. and Mann, M. 2011. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 80, 1 (2011), 273–299. DOI:https://doi.org/10.1146/annurev-biochem-061308-093216.
[44]
Cox, J. and Mann, M. 2011. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 80, 1 (2011), 273–299. DOI:https://doi.org/10.1146/annurev-biochem-061308-093216.
[45]
Cravatt, B.F. et al. 2007. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 7172 (2007), 991–1000. DOI:https://doi.org/10.1038/nature06525.
[46]
Cravatt, B.F. et al. 2007. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 7172 (2007), 991–1000. DOI:https://doi.org/10.1038/nature06525.
[47]
Cravatt, B.F. et al. 2007. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 7172 (2007), 991–1000. DOI:https://doi.org/10.1038/nature06525.
[48]
Cravatt, B.F. et al. 2007. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 7172 (2007), 991–1000. DOI:https://doi.org/10.1038/nature06525.
[49]
Cravatt, B.F. et al. 2007. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 7172 (2007), 991–1000. DOI:https://doi.org/10.1038/nature06525.
[50]
Danial, N.N. et al. 2003. BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis. Nature. 424, 6951 (2003), 952–956. DOI:https://doi.org/10.1038/nature01825.
[51]
Devoto, A. and Turner, J.G. 2005. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 123, 2 (2005), 161–172. DOI:https://doi.org/10.1111/j.1399-3054.2004.00418.x.
[52]
Devoto, A. and Turner, J.G. 2005. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 123, 2 (2005), 161–172. DOI:https://doi.org/10.1111/j.1399-3054.2004.00418.x.
[53]
Domon, B. and Aebersold, R. 2006. Mass Spectrometry and Protein Analysis. Science. 312, 5771 (2006), 212–217. DOI:https://doi.org/10.1126/science.1124619.
[54]
Domon, B. and Aebersold, R. 2006. Mass Spectrometry and Protein Analysis. Science. 312, 5771 (2006), 212–217. DOI:https://doi.org/10.1126/science.1124619.
[55]
Domon, B. and Aebersold, R. 2006. Mass Spectrometry and Protein Analysis. Science. 312, 5771 (2006), 212–217. DOI:https://doi.org/10.1126/science.1124619.
[56]
Domon, B. and Aebersold, R. 2010. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 28, 7 (2010), 710–721. DOI:https://doi.org/10.1038/nbt.1661.
[57]
Domon, B. and Aebersold, R. 2010. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 28, 7 (2010), 710–721. DOI:https://doi.org/10.1038/nbt.1661.
[58]
Domon, B. and Aebersold, R. 2010. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 28, 7 (2010), 710–721. DOI:https://doi.org/10.1038/nbt.1661.
[59]
E. Nicolas, F. et al. 2011. Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery. 6, 1 (2011), 94–105. DOI:https://doi.org/10.2174/157489211793980033.
[60]
Eamens, A. and Wang, M.-B. 2008. RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology. 147, 2 (2008), 456–468.
[61]
Ebhardt, H.A. et al. 2015. Applications of Targeted Proteomics in Systems Biology and Translational Medicine. Proteomics. 15, 18 (2015), 3193–3208. DOI:https://doi.org/10.1002/pmic.201500004.
[62]
Engholm-Keller, K. and Birck, P. 2012. TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC. Journal of Proteomics. 75, 18 (2012), 5749–5761. DOI:https://doi.org/10.1016/j.jprot.2012.08.007.
[63]
Engholm-Keller, K. and Larsen, M.R. 2013. Technologies and Challenges in Large-Scale Phosphoproteomics. Proteomics. 13, 6 (2013), 910–931. DOI:https://doi.org/10.1002/pmic.201200484.
[64]
Foster, L.J. et al. 2003. Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors. Proceedings Of The National Academy Of Sciences Of The United States Of America. 100, 10 (2003), 5813–5818.
[65]
Foster, L.J. and de Hoog, C.L. 2006. A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 125, 1 (2006), 187–199. DOI:https://doi.org/10.1016/j.cell.2006.03.022.
[66]
Foster, L.J. and de Hoog, C.L. 2006. A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 125, 1 (2006), 187–199. DOI:https://doi.org/10.1016/j.cell.2006.03.022.
[67]
Gary Siuzdak 2003. The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr.
[68]
Gary Siuzdak 2003. The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr.
[69]
Gehring, W.J. and Ikeo, K. 1999. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 15, 9 (1999), 371–377. DOI:https://doi.org/10.1016/S0168-9525(99)01776-X.
[70]
Gehring, W.J. and Ikeo, K. 1999. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 15, 9 (1999), 371–377. DOI:https://doi.org/10.1016/S0168-9525(99)01776-X.
[71]
Geiger, T. and Cox, J. 2010. Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue. Nature Methods. 7, 5 (2010), 383–385. DOI:https://doi.org/10.1038/nmeth.1446.
[72]
Geiger, T. and Wehner, A. 2012. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics. 11, 3 (2012). DOI:https://doi.org/10.1074/mcp.M111.014050.
[73]
Geiger, T. and Wehner, A. 2012. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics. 11, 3 (2012). DOI:https://doi.org/10.1074/mcp.M111.014050.
[74]
Goldsmith-Fischman, S. and Honig, B. 2003. Structural Genomics: Computational Methods for Structure Analysis. Protein Science. 12, 9 (2003), 1813–1821. DOI:https://doi.org/10.1110/ps.0242903.
[75]
Goljanek-Whysall, K. and Sweetman, D. 2011. Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology). Proceedings of the National Academy of Sciences of the United States. 108, 29 (2011), 11936–11941.
[76]
Gstaiger, M. and Aebersold, R. 2009. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 10, 9 (2009), 617–627. DOI:https://doi.org/10.1038/nrg2633.
[77]
Gstaiger, M. and Aebersold, R. 2009. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 10, 9 (2009), 617–627. DOI:https://doi.org/10.1038/nrg2633.
[78]
Han, X. et al. 2008. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 12, 5 (2008), 483–490. DOI:https://doi.org/10.1016/j.cbpa.2008.07.024.
[79]
Han, X. et al. 2008. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 12, 5 (2008), 483–490. DOI:https://doi.org/10.1016/j.cbpa.2008.07.024.
[80]
Hannon, G.J. 2002. RNA Interference. Nature. 418, 6894 (2002), 244–251. DOI:https://doi.org/10.1038/418244a.
[81]
Harbison, C.T. et al. 2004. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 431, 7004 (2004), 99–104. DOI:https://doi.org/10.1038/nature02800.
[82]
Harbison, C.T. et al. 2004. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 431, 7004 (2004), 99–104. DOI:https://doi.org/10.1038/nature02800.
[83]
Hughes, T.R. and Marton, M.J. 2000. Functional Discovery via a Compendium of Expression Profiles. Cell. 102, 1 (2000), 109–126. DOI:https://doi.org/10.1016/S0092-8674(00)00015-5.
[84]
Ideker, T. et al. 2001. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2, 1 (2001), 343–372. DOI:https://doi.org/10.1146/annurev.genom.2.1.343.
[85]
Ideker, T. et al. 2001. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2, 1 (2001), 343–372. DOI:https://doi.org/10.1146/annurev.genom.2.1.343.
[86]
Jacque, J.-M. et al. 2002. Modulation of HIV-1 Replication by RNA Interference. Nature. 418, 6896 (2002), 435–438. DOI:https://doi.org/10.1038/nature00896.
[87]
Jen, C.-H. and Manfield, I.W. 2006. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 46, 2 (2006), 336–348. DOI:https://doi.org/10.1111/j.1365-313X.2006.02681.x.
[88]
Jen, C.-H. and Manfield, I.W. 2006. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 46, 2 (2006), 336–348. DOI:https://doi.org/10.1111/j.1365-313X.2006.02681.x.
[89]
Jensen, L.J. and Kuhn, M. 2009. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 37, Database (2009), D412–D416. DOI:https://doi.org/10.1093/nar/gkn760.
[90]
Jensen, L.J. and Kuhn, M. 2009. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 37, Database (2009), D412–D416. DOI:https://doi.org/10.1093/nar/gkn760.
[91]
Johnson, D.S. et al. 2007. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science (New York, N.Y.). 316, 5830 (2007), 1497–1502. DOI:https://doi.org/10.1126/science.1141319.
[92]
Jung, J.W. and Lee, W. 2004. Structure-Based Functional Discovery of Proteins: Structural Proteomics. Journal of Biochemistry and Molecular Biology. 37, 1 (2004), 28–34.
[93]
Katoh, M. and Kato, M. 2003. Comparative Genomics between Drosophila and Human [open access]. Genome Informatics. 14, (2003), 587–588.
[94]
Keck, J.M. and Jones, M.H. 2011. A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science. 332, 6037 (2011), 1557–1561. DOI:https://doi.org/10.1126/science.1205193.
[95]
Kitano, H. 2002. Computational Systems Biology. Nature. 420, 6912 (2002), 206–210. DOI:https://doi.org/10.1038/nature01254.
[96]
Knight, H. and Knight, M.R. 2001. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 6, 6 (2001), 262–267. DOI:https://doi.org/10.1016/S1360-1385(01)01946-X.
[97]
Knight, H. and Knight, M.R. 2001. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 6, 6 (2001), 262–267. DOI:https://doi.org/10.1016/S1360-1385(01)01946-X.
[98]
Krogan, N.J. and Cagney, G. 2006. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 440, 7084 (2006), 637–643. DOI:https://doi.org/10.1038/nature04670.
[99]
Krogan, N.J. and Cagney, G. 2006. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 440, 7084 (2006), 637–643. DOI:https://doi.org/10.1038/nature04670.
[100]
Larance, M. and Lamond, A.I. 2015. Multidimensional Proteomics for Cell Biology. Nature Reviews Molecular Cell Biology. 16, 5 (2015), 269–280. DOI:https://doi.org/10.1038/nrm3970.
[101]
Latchman, D.S. 2007. Transcription Factors. (2007). DOI:https://doi.org/10.1002/9780470015902.a0005278.pub2.
[102]
Latchman, D.S. 2007. Transcription Factors. (2007). DOI:https://doi.org/10.1002/9780470015902.a0005278.pub2.
[103]
Latchman, D.S. 2005. Transcriptional Gene Regulation in Eukaryotes. (2005). DOI:https://doi.org/10.1002/9780470015902.a0002322.pub2.
[104]
Latchman, D.S. 2005. Transcriptional Gene Regulation in Eukaryotes. (2005). DOI:https://doi.org/10.1002/9780470015902.a0002322.pub2.
[105]
Legrain, P. 2006. Protein-Protein Interaction Maps. Encyclopedia of life sciences. (2006). DOI:https://doi.org/10.1002/9780470015902.a0006205.
[106]
Legrain, P. 2006. Protein-Protein Interaction Maps. eLS. (2006).
[107]
Leitner, A. et al. 2016. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences. 41, 1 (2016), 20–32. DOI:https://doi.org/10.1016/j.tibs.2015.10.008.
[108]
Lesur, A. and Domon, B. 2015. Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics. Proteomics. 15, 5–6 (2015), 880–890. DOI:https://doi.org/10.1002/pmic.201400450.
[109]
Liu, Y. and Aebersold, R. 2016. The Interdependence of Transcript and Protein Abundance: New Data-New Complexities. Molecular Systems Biology. 12, 1 (2016), 856–856. DOI:https://doi.org/10.15252/msb.20156720.
[110]
Macek, B. et al. 2009. Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology. 49, 1 (2009), 199–221. DOI:https://doi.org/10.1146/annurev.pharmtox.011008.145606.
[111]
Makałowski, W. et al. 2018. Bioinformatics. Encyclopedia of Life Sciences. Wiley Interscience. 1–9.
[112]
Mansouri, A. 2005. Knockout and Knock-in Animals. (2005). DOI:https://doi.org/10.1038/npg.els.0003840.
[113]
Mardis, E.R. 2007. ChIP-Seq: Welcome to the New Frontier. Nature Methods. 4, 8 (2007), 613–614. DOI:https://doi.org/10.1038/nmeth0807-613.
[114]
Mardis, E.R. 2008. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics. 9, 1 (2008), 387–402. DOI:https://doi.org/10.1146/annurev.genom.9.081307.164359.
[115]
Mardis, E.R. 2008. The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics. 24, 3 (2008), 133–141. DOI:https://doi.org/10.1016/j.tig.2007.12.007.
[116]
Mass Spectrometry Facility: http://www.chm.bris.ac.uk/ms/mshome.xhtml.
[117]
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia: https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics.
[118]
Massie, C.E. and Mills, I.G. 2008. ChIPping Away at Gene Regulation. EMBO Reports. 9, 4 (2008), 337–343. DOI:https://doi.org/10.1038/embor.2008.44.
[119]
Mathé, C. and Sagot, M.-F. 2002. Current Methods of Gene Prediction, Their Strengths and Weaknesses. Nucleic Acids Research. 30, 19 (2002), 4103–4117. DOI:https://doi.org/10.1093/nar/gkf543.
[120]
Matsuoka, S. and Ballif, B.A. 2007. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science (New York, N.Y.). 316, 5828 (2007), 1160–1166.
[121]
Matys, V. and Fricke, E. 2003. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 31, 1 (2003), 374–378. DOI:https://doi.org/10.1093/nar/gkg108.
[122]
Matys, V. and Fricke, E. 2003. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 31, 1 (2003), 374–378. DOI:https://doi.org/10.1093/nar/gkg108.
[123]
Metzker, M.L. 2005. Emerging Technologies in DNA Sequencing. Genome Research. 15, 12 (2005), 1767–1776. DOI:https://doi.org/10.1101/gr.3770505.
[124]
Meyer, P. 2006. Gene Silencing in Plants. (2006). DOI:https://doi.org/10.1002/9780470015902.a0002022.pub2.
[125]
Mitchell, P.J. and Tjian, R. 1989. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 245, 4916 (1989), 371–378. DOI:https://doi.org/10.1126/science.2667136.
[126]
Mitchell, P.J. and Tjian, R. 1989. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 245, 4916 (1989), 371–378. DOI:https://doi.org/10.1126/science.2667136.
[127]
Murray, D. et al. 2007. In Silico Gene Expression Analysis – an Overview. Molecular Cancer. 6, 1 (2007). DOI:https://doi.org/10.1186/1476-4598-6-50.
[128]
Nemhauser, J.L. et al. 2006. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 126, 3 (2006), 467–475. DOI:https://doi.org/10.1016/j.cell.2006.05.050.
[129]
Nemhauser, J.L. et al. 2006. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 126, 3 (2006), 467–475. DOI:https://doi.org/10.1016/j.cell.2006.05.050.
[130]
Nikolov, M. et al. 2012. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Quantitative Methods in Proteomics. Humana Press. 85–100.
[131]
Nikolov, M. et al. 2012. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Quantitative Methods in Proteomics. Humana Press. 85–100.
[132]
Nilsson, C.L. 2012. Advances in Quantitative Phosphoproteomics. Analytical Chemistry. 84, 2 (2012), 735–746. DOI:https://doi.org/10.1021/ac202877y.
[133]
Olsen, J.V. et al. 2006. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell. 127, 3 (2006), 635–648. DOI:https://doi.org/10.1016/j.cell.2006.09.026.
[134]
Olsen, J.V. et al. 2010. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling. 3, 104 (2010).
[135]
Olsen, J.V. et al. 2010. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling. 3, 104 (2010).
[136]
Oltvai, Z.N. 2002. Systems Biology: Life’s Complexity Pyramid. Science. 298, 5594 (2002), 763–764. DOI:https://doi.org/10.1126/science.1078563.
[137]
Oltvai, Z.N. and Barabási, A.-L. 2002. Systems Biology. Life’s Complexity Pyramid. Science (New York, N.Y.). 298, 5594 (2002), 763–764. DOI:https://doi.org/10.1126/science.1078563.
[138]
Oppermann, F.S. et al. 2009. Large-Scale Proteomics Analysis of the Human Kinome. Molecular & Cellular Proteomics. 8, 7 (2009), 1751–1764. DOI:https://doi.org/10.1074/mcp.M800588-MCP200.
[139]
Palumbo, A.M. and Smith, S.A. 2011. Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrometry Reviews. 30, 4 (2011), 600–625. DOI:https://doi.org/10.1002/mas.20310.
[140]
Pan, C. et al. 2009. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 8, 12 (2009), 2796–2808. DOI:https://doi.org/10.1074/mcp.M900285-MCP200.
[141]
Pan, C. et al. 2009. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 8, 12 (2009), 2796–2808. DOI:https://doi.org/10.1074/mcp.M900285-MCP200.
[142]
Pavy, N. and Leroy, P. 1999. Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences. Bioinformatics. 15, 11 (1999), 887–899. DOI:https://doi.org/10.1093/bioinformatics/15.11.887.
[143]
Peptide Mass Fingerprinting an IonSource Tutorial: http://www.ionsource.com/tutorial/.
[144]
Petschnigg, J. et al. 2011. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 22, 1 (2011), 50–58. DOI:https://doi.org/10.1016/j.copbio.2010.09.001.
[145]
Petschnigg, J. et al. 2011. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 22, 1 (2011), 50–58. DOI:https://doi.org/10.1016/j.copbio.2010.09.001.
[146]
Pieroni, E. and de la Fuente van Bentem, S. 2008. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 8, 4 (2008), 799–816. DOI:https://doi.org/10.1002/pmic.200700767.
[147]
Pieroni, E. and de la Fuente van Bentem, S. 2008. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 8, 4 (2008), 799–816. DOI:https://doi.org/10.1002/pmic.200700767.
[148]
Puig, O. and Caspary, F. 2001. The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods. 24, 3 (2001), 218–229. DOI:https://doi.org/10.1006/meth.2001.1183.
[149]
Rajagopala, S.V. et al. 2012. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 58, 4 (2012), 392–399. DOI:https://doi.org/10.1016/j.ymeth.2012.07.015.
[150]
Rajagopala, S.V. et al. 2012. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 58, 4 (2012), 392–399. DOI:https://doi.org/10.1016/j.ymeth.2012.07.015.
[151]
Rank, D.R. and Hanzel, D.K. 2006. Microarrays: Use in Gene Identification. (2006). DOI:https://doi.org/10.1038/npg.els.0005952.
[152]
Ren, B. and Dynlacht, B.D. 2003. Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Chromatin and Chromatin Remodeling Enzymes, Part B. 376, (2003), 304–315.
[153]
Ren, B. and Robert, F. 2000. Genome-Wide Location and Function of DNA Binding Proteins. Science. 290, 5500 (2000), 2306–2309. DOI:https://doi.org/10.1126/science.290.5500.2306.
[154]
Rockett, J.C. and Dix, D.J. 2006. Gene Expression Networks. (2006). DOI:https://doi.org/10.1038/npg.els.0005280.
[155]
Rual, J.-F. and Venkatesan, K. 2005. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 437, 7062 (2005), 1173–1178. DOI:https://doi.org/10.1038/nature04209.
[156]
Rual, J.-F. and Venkatesan, K. 2005. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 437, 7062 (2005), 1173–1178. DOI:https://doi.org/10.1038/nature04209.
[157]
Sakuma, Y. and Maruyama, K. 2006. Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States. 103, 49 (2006), 18822–18827. DOI:https://doi.org/10.1073/pnas.0605639103.
[158]
Santamaria, A. and Wang, B. 2011. The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular & Cellular Proteomics. 10, 1 (2011), M110.004457-M110.004457. DOI:https://doi.org/10.1074/mcp.M110.004457.
[159]
Schreiber, T.B. and Mausbacher, N. 2010. An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling. Molecular & Cellular Proteomics. 9, 6 (2010), 1047–1062. DOI:https://doi.org/10.1074/mcp.M900486-MCP200.
[160]
Semenza, G.L. 2005. Transcription Factors and Human Disorders. (2005). DOI:https://doi.org/10.1038/npg.els.0005504.
[161]
Semenza, G.L. 2005. Transcription Factors and Human Disorders. (2005). DOI:https://doi.org/10.1038/npg.els.0005504.
[162]
Silva, J.M. et al. 2002. RNA Interference: A Promising Approach to Antiviral Therapy? Trends in Molecular Medicine. 8, 11 (2002), 505–508. DOI:https://doi.org/10.1016/S1471-4914(02)02421-8.
[163]
Singh, K. 2002. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 5, 5 (2002), 430–436. DOI:https://doi.org/10.1016/S1369-5266(02)00289-3.
[164]
Singh, K. 2002. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 5, 5 (2002), 430–436. DOI:https://doi.org/10.1016/S1369-5266(02)00289-3.
[165]
Smith, R.S. and Gutierrez-Arcelus, M. 2008. Structural Diversity of the Human Genome and Disease Susceptibility. (2008). DOI:https://doi.org/10.1002/9780470015902.a0020764.
[166]
Sonnhammer, E.L. and Eddy, S.R. 1998. Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains. Nucleic Acids Research. 26, 1 (1998), 320–322. DOI:https://doi.org/10.1093/nar/26.1.320.
[167]
Soppe, W.J.J. et al. 2000. The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell. 6, 4 (2000), 791–802. DOI:https://doi.org/10.1016/S1097-2765(05)00090-0.
[168]
Steckelberg, A.-L. et al. 2012. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2, 3 (2012), 454–461. DOI:https://doi.org/10.1016/j.celrep.2012.08.017.
[169]
Steckelberg, A.-L. et al. 2012. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2, 3 (2012), 454–461. DOI:https://doi.org/10.1016/j.celrep.2012.08.017.
[170]
Steen, H. and Mann, M. 2004. The ABC’s (And XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology. 5, 9 (2004), 699–711. DOI:https://doi.org/10.1038/nrm1468.
[171]
Stubbs, A.P. et al. 2008. Microarray Bioinformatics. (2008). DOI:https://doi.org/10.1002/9780470015902.a0005957.pub2.
[172]
Suter, B. et al. 2008. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 19, 4 (2008), 316–323. DOI:https://doi.org/10.1016/j.copbio.2008.06.005.
[173]
Suter, B. et al. 2008. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 19, 4 (2008), 316–323. DOI:https://doi.org/10.1016/j.copbio.2008.06.005.
[174]
Thingholm, T.E. and Jensen, O.N. 2008. SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics: Mcp. 7, 4 (2008), 661–671. DOI:https://doi.org/10.1074/mcp.M700362-MCP200.
[175]
Tohge, T. and Fernie, A.R. 2012. Co-Expression and Co-Responses: Within and Beyond Transcription. Frontiers in Plant Science. 3, (2012). DOI:https://doi.org/10.3389/fpls.2012.00248.
[176]
Tuschl, T. 2003. Functional Genomics: RNA Sets the Standard. Nature. 421, 6920 (2003), 220–221. DOI:https://doi.org/10.1038/421220a.
[177]
Tyson, J.J. et al. 2001. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2, 12 (2001), 908–916. DOI:https://doi.org/10.1038/35103078.
[178]
Tyson, J.J. et al. 2001. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2, 12 (2001), 908–916. DOI:https://doi.org/10.1038/35103078.
[179]
Ummanni, R. et al. 2011. Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS ONE. 6, 2 (2011). DOI:https://doi.org/10.1371/journal.pone.0016833.
[180]
Von Mering, C. and Jensen, L.J. 2005. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 33, Database issue (2005), D433–D437. DOI:https://doi.org/10.1093/nar/gki005.
[181]
Von Mering, C. and Jensen, L.J. 2005. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 33, Database issue (2005), D433–D437. DOI:https://doi.org/10.1093/nar/gki005.
[182]
Weigel, D. and Ahn, J.H. 2000. Activation Tagging in Arabidopsis. Plant Physiology. 122, 4 (2000), 1003–1013.
[183]
What is Mass Spectrometry? https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec.
[184]
Yates, J.R. and Link, A.J. 1999. Direct Analysis of Protein Complexes Using Mass Spectrometry. Nature Biotechnology. 17, 7 (1999), 676–682. DOI:https://doi.org/10.1038/10890.
[185]
Zerbino, D.R. et al. 2012. Integrating Genomes. Science. 336, 6078 (2012), 179–182. DOI:https://doi.org/10.1126/science.1216830.
[186]
Zhang, W.-J. et al. 2012. Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c. Molecular Plant Pathology. 13, 9 (2012), 1110–1119. DOI:https://doi.org/10.1111/j.1364-3703.2012.00820.x.
[187]
Zhu, J.-K. 2002. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 53, 1 (2002), 247–273. DOI:https://doi.org/10.1146/annurev.arplant.53.091401.143329.
[188]
Zhu, J.-K. 2002. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 53, 1 (2002), 247–273. DOI:https://doi.org/10.1146/annurev.arplant.53.091401.143329.
[189]
Zilberman, D. and Henikoff, S. 2005. Epigenetic Inheritance in Arabidopsis: Selective Silence. Current Opinion in Genetics & Development. 15, 5 (2005), 557–562. DOI:https://doi.org/10.1016/j.gde.2005.07.002.
[190]
Zvelebil, M.J. and Baum, J.O. 2008. Analyzing Structure-Function Relationships. Understanding Bioinformatics. Garland Science.
[191]
Zvelebil, M.J. and Baum, J.O. 2008. Dealing with Databases. Understanding Bioinformatics. Garland Science.
[192]
Zvelebil, M.J. and Baum, J.O. 2008. Gene Detection and Genome Annotation. Understanding Bioinformatics. Garland Science.
[193]
Zvelebil, M.J. and Baum, J.O. 2008. Predicting Secondary Structures. Understanding Bioinformatics. Garland Science.
[194]
Zvelebil, M.J. and Baum, J.O. 2008. Protein Structure. Understanding Bioinformatics. Garland Science.
[195]
Zvelebil, M.J. and Baum, J.O. 2008. Proteome and Gene Expression Analysis. Understanding Bioinformatics. Garland Science.
[196]
Zvelebil, M.J. and Baum, J.O. 2008. Revealing Genome Features. Understanding Bioinformatics. Garland Science.
[197]
Zvelebil, M.J. and Baum, J.O. 2008. Systems Biology. Understanding Bioinformatics. Garland Science.
[198]
Zvelebil, M.J. and Baum, J.O. 2008. Understanding Bioinformatics. Garland Science.
[199]
1996. Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals. Biological Chemistry Hoppe-Seyler. 377, 10 (1996), 605–618. DOI:https://doi.org/10.1515/bchm3.1996.377.10.605.
[200]
2006. Mass Spectrometry - FTICR.
[201]
Proteomics Analysis Step by Step Tutorial Educative File.