1.
Zvelebil MJ, Baum JO. Understanding Bioinformatics. Garland Science; 2008.
2.
Zvelebil MJ, Baum JO. Protein Structure. In: Understanding Bioinformatics. Garland Science; 2008.
3.
Zvelebil MJ, Baum JO. Dealing with Databases. In: Understanding Bioinformatics. Garland Science; 2008.
4.
Zvelebil MJ, Baum JO. Revealing Genome Features. In: Understanding Bioinformatics. Garland Science; 2008.
5.
Zvelebil MJ, Baum JO. Gene Detection and Genome Annotation. In: Understanding Bioinformatics. Garland Science; 2008.
6.
Zvelebil MJ, Baum JO. Predicting Secondary Structures. In: Understanding Bioinformatics. Garland Science; 2008.
7.
Zvelebil MJ, Baum JO. Analyzing Structure-Function Relationships. In: Understanding Bioinformatics. Garland Science; 2008.
8.
Zvelebil MJ, Baum JO. Proteome and Gene Expression Analysis. In: Understanding Bioinformatics. Garland Science; 2008.
9.
Zvelebil MJ, Baum JO. Systems Biology. In: Understanding Bioinformatics. Garland Science; 2008.
10.
Baker D, Sali A. Protein Structure Prediction and Structural Genomics. Science. 2001;294(5540):93-96. doi:10.1126/science.1065659
11.
Hughes TR, Marton MJ. Functional Discovery via a Compendium of Expression Profiles. Cell. 2000;102(1):109-126. doi:10.1016/S0092-8674(00)00015-5
12.
Goldsmith-Fischman S, Honig B. Structural Genomics: Computational Methods for Structure Analysis. Protein Science. 2003;12(9):1813-1821. doi:10.1110/ps.0242903
13.
Jung JW, Lee W. Structure-Based Functional Discovery of Proteins: Structural Proteomics. Journal of Biochemistry and Molecular Biology. 2004;37(1):28-34.
14.
Smith RS, Gutierrez-Arcelus M. Structural Diversity of the Human Genome and Disease Susceptibility. Published online 2008. doi:10.1002/9780470015902.a0020764
15.
Rockett JC, Dix DJ. Gene Expression Networks. Published online 2006. doi:10.1038/npg.els.0005280
16.
Stubbs AP, Van Yper SJL, van der Spek PJ. Microarray Bioinformatics. Published online 2008. doi:10.1002/9780470015902.a0005957.pub2
17.
Rank DR, Hanzel DK. Microarrays: Use in Gene Identification. Published online 2006. doi:10.1038/npg.els.0005952
18.
Brazma A, Sarkans U. Gene Expression Databases. Published online 2007. doi:10.1002/9780470015902.a0005248.pub2
19.
Yates JR, Link AJ. Direct Analysis of Protein Complexes Using Mass Spectrometry. Nature Biotechnology. 1999;17(7):676-682. doi:10.1038/10890
20.
Makałowski W, Shabardina V, Makałowska I. Bioinformatics. In: Encyclopedia of Life Sciences. Wiley Interscience; 2018:1-9. doi:10.1002/9780470015902.a0005247.pub3
21.
Altschul SF, Boguski MS, Gish W, Wootton JC. Issues in Searching Molecular Sequence Databases. Nature Genetics. 1994;6(2):119-129.
22.
Mathé C, Sagot MF. Current Methods of Gene Prediction, Their Strengths and Weaknesses. Nucleic Acids Research. 2002;30(19):4103-4117. doi:10.1093/nar/gkf543
23.
Sonnhammer EL, Eddy SR. Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains. Nucleic Acids Research. 1998;26(1):320-322. doi:10.1093/nar/26.1.320
24.
Apweiler R, Attwood TK. The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Nucleic Acids Research. 2001;29(1):37-40. doi:10.1093/nar/29.1.37
25.
Pavy N, Leroy P. Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences. Bioinformatics. 1999;15(11):887-899. doi:10.1093/bioinformatics/15.11.887
26.
Katoh M, Kato M. Comparative Genomics between Drosophila and Human [open access]. Genome Informatics. 2003;14:587-588. http://www.jsbi.org/pdfs/journal1/GIW03/GIW03P190.pdf
27.
Tohge T, Fernie AR. Co-Expression and Co-Responses: Within and Beyond Transcription. Frontiers in Plant Science. 2012;3. doi:10.3389/fpls.2012.00248
28.
Murray D, Doran P, MacMathuna P, Moss AC. In Silico Gene Expression Analysis – an Overview. Molecular Cancer. 2007;6(1). doi:10.1186/1476-4598-6-50
29.
Sakuma Y, Maruyama K. Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States. 2006;103(49):18822-18827. doi:10.1073/pnas.0605639103
30.
Zilberman D, Henikoff S. Epigenetic Inheritance in Arabidopsis: Selective Silence. Current Opinion in Genetics & Development. 2005;15(5):557-562. doi:10.1016/j.gde.2005.07.002
31.
Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals. Biological Chemistry Hoppe-Seyler. 1996;377(10):605-618. doi:10.1515/bchm3.1996.377.10.605
32.
Soppe WJJ, Jacobsen SE, al E. The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell. 2000;6(4):791-802. doi:10.1016/S1097-2765(05)00090-0
33.
Weigel D, Ahn JH. Activation Tagging in Arabidopsis. Plant Physiology. 2000;122(4):1003-1013. https://doi.org/10.1038/npg.els.0005280
34.
Mansouri A. Knockout and Knock-in Animals. Published online 2005. doi:10.1038/npg.els.0003840
35.
Goljanek-Whysall K, Sweetman D. Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology). Proceedings of the National Academy of Sciences of the United States. 2011;108(29):11936-11941. http://www.jstor.org/stable/27978927
36.
Eamens A, Wang MB. RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology. 2008;147(2):456-468. http://www.jstor.org/stable/40066045
37.
E. Nicolas F, Lopez-Gomollon S, F. Lopez-Martinez A, Dalmay T. Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery. 2011;6(1):94-105. doi:10.2174/157489211793980033
38.
Hannon GJ. RNA Interference. Nature. 2002;418(6894):244-251. doi:10.1038/418244a
39.
Tuschl T. Functional Genomics: RNA Sets the Standard. Nature. 2003;421(6920):220-221. doi:10.1038/421220a
40.
Silva JM, Hammond SM, Hannon GJ. RNA Interference: A Promising Approach to Antiviral Therapy? Trends in Molecular Medicine. 2002;8(11):505-508. doi:10.1016/S1471-4914(02)02421-8
41.
Meyer P. Gene Silencing in Plants. Published online 2006. doi:10.1002/9780470015902.a0002022.pub2
42.
Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 Replication by RNA Interference. Nature. 2002;418(6896):435-438. doi:10.1038/nature00896
43.
Latchman DS. Transcription Factors. Published online 2007. doi:10.1002/9780470015902.a0005278.pub2
44.
Mitchell PJ, Tjian R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 1989;245(4916):371-378. doi:10.1126/science.2667136
45.
Semenza GL. Transcription Factors and Human Disorders. Published online 2005. doi:10.1038/npg.els.0005504
46.
Latchman DS. Transcriptional Gene Regulation in Eukaryotes. Published online 2005. doi:10.1002/9780470015902.a0002322.pub2
47.
Gehring WJ, Ikeo K. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 1999;15(9):371-377. doi:10.1016/S0168-9525(99)01776-X
48.
Knight H, Knight MR. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 2001;6(6):262-267. doi:10.1016/S1360-1385(01)01946-X
49.
Zhu JK. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 2002;53(1):247-273. doi:10.1146/annurev.arplant.53.091401.143329
50.
Singh K. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 2002;5(5):430-436. doi:10.1016/S1369-5266(02)00289-3
51.
Devoto A, Turner JG. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 2005;123(2):161-172. doi:10.1111/j.1399-3054.2004.00418.x
52.
Matys V, Fricke E. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 2003;31(1):374-378. doi:10.1093/nar/gkg108
53.
Latchman DS. Transcription Factors. Published online 2007. doi:10.1002/9780470015902.a0005278.pub2
54.
Mitchell PJ, Tjian R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 1989;245(4916):371-378. doi:10.1126/science.2667136
55.
Semenza GL. Transcription Factors and Human Disorders. Published online 2005. doi:10.1038/npg.els.0005504
56.
Latchman DS. Transcriptional Gene Regulation in Eukaryotes. Published online 2005. doi:10.1002/9780470015902.a0002322.pub2
57.
Gehring WJ, Ikeo K. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 1999;15(9):371-377. doi:10.1016/S0168-9525(99)01776-X
58.
Knight H, Knight MR. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 2001;6(6):262-267. doi:10.1016/S1360-1385(01)01946-X
59.
Zhu JK. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 2002;53(1):247-273. doi:10.1146/annurev.arplant.53.091401.143329
60.
Singh K. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 2002;5(5):430-436. doi:10.1016/S1369-5266(02)00289-3
61.
Devoto A, Turner JG. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 2005;123(2):161-172. doi:10.1111/j.1399-3054.2004.00418.x
62.
Matys V, Fricke E. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 2003;31(1):374-378. doi:10.1093/nar/gkg108
63.
Zerbino DR, Paten B, Haussler D. Integrating Genomes. Science. 2012;336(6078):179-182. doi:10.1126/science.1216830
64.
Kitano H. Computational Systems Biology. Nature. 2002;420(6912):206-210. doi:10.1038/nature01254
65.
Ideker T, Galitski T, Hood L. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2001;2(1):343-372. doi:10.1146/annurev.genom.2.1.343
66.
Tyson JJ, Chen K, Novak B. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2001;2(12):908-916. doi:10.1038/35103078
67.
Bruggeman FJ, Westerhoff HV. The Nature of Systems Biology. Trends in Microbiology. 2007;15(1):45-50. doi:10.1016/j.tim.2006.11.003
68.
Aloy P, Russell RB. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 2005;579(8):1854-1858. doi:10.1016/j.febslet.2005.02.014
69.
Harbison CT, Gordon DB, Young RA. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 2004;431(7004):99-104. doi:10.1038/nature02800
70.
Jen CH, Manfield IW. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 2006;46(2):336-348. doi:10.1111/j.1365-313X.2006.02681.x
71.
Oltvai ZN, Barabási AL. Systems Biology. Life’s Complexity Pyramid. Science (New York, NY). 2002;298(5594):763-764. doi:10.1126/science.1078563
72.
Nemhauser JL, Hong F, Chory J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 2006;126(3):467-475. doi:10.1016/j.cell.2006.05.050
73.
Legrain P. Protein-Protein Interaction Maps. Encyclopedia of life sciences. Published online 2006. doi:10.1002/9780470015902.a0006205
74.
Krogan NJ, Cagney G. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 2006;440(7084):637-643. doi:10.1038/nature04670
75.
Von Mering C, Jensen LJ. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 2005;33(Database issue):D433-D437. doi:10.1093/nar/gki005
76.
Pieroni E, de la Fuente van Bentem S. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 2008;8(4):799-816. doi:10.1002/pmic.200700767
77.
Bork P, Jensen LJ. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 2004;14(3):292-299. doi:10.1016/j.sbi.2004.05.003
78.
Jensen LJ, Kuhn M. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 2009;37(Database):D412-D416. doi:10.1093/nar/gkn760
79.
Jen CH, Manfield IW. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 2006;46(2):336-348. doi:10.1111/j.1365-313X.2006.02681.x
80.
Oltvai ZN. Systems Biology: Life’s Complexity Pyramid. Science. 2002;298(5594):763-764. doi:10.1126/science.1078563
81.
Nemhauser JL, Hong F, Chory J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 2006;126(3):467-475. doi:10.1016/j.cell.2006.05.050
82.
Legrain P. Protein-Protein Interaction Maps. eLS. Published online 2006. https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0006205
83.
Krogan NJ, Cagney G. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 2006;440(7084):637-643. doi:10.1038/nature04670
84.
Von Mering C, Jensen LJ. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 2005;33(Database issue):D433-D437. doi:10.1093/nar/gki005
85.
Pieroni E, de la Fuente van Bentem S. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 2008;8(4):799-816. doi:10.1002/pmic.200700767
86.
Bork P, Jensen LJ. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 2004;14(3):292-299. doi:10.1016/j.sbi.2004.05.003
87.
Jensen LJ, Kuhn M. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 2009;37(Database):D412-D416. doi:10.1093/nar/gkn760
88.
Massie CE, Mills IG. ChIPping Away at Gene Regulation. EMBO Reports. 2008;9(4):337-343. doi:10.1038/embor.2008.44
89.
Harbison CT, Gordon DB, Young RA. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 2004;431(7004):99-104. doi:10.1038/nature02800
90.
Ren B, Dynlacht BD. Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Chromatin and Chromatin Remodeling Enzymes, Part B. 2003;376:304-315. https://doi.org/10.1016/S0076-6879(03)76020-0
91.
Ren B, Robert F. Genome-Wide Location and Function of DNA Binding Proteins. Science. 2000;290(5500):2306-2309. doi:10.1126/science.290.5500.2306
92.
Mardis ER. ChIP-Seq: Welcome to the New Frontier. Nature Methods. 2007;4(8):613-614. doi:10.1038/nmeth0807-613
93.
Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science (New York, NY). 2007;316(5830):1497-1502. doi:10.1126/science.1141319
94.
Mardis ER. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics. 2008;9(1):387-402. doi:10.1146/annurev.genom.9.081307.164359
95.
Metzker ML. Emerging Technologies in DNA Sequencing. Genome Research. 2005;15(12):1767-1776. doi:10.1101/gr.3770505
96.
Amaral AJ, Megens HJ. Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome. BMC Genomics. 2009;10(1). doi:10.1186/1471-2164-10-374
97.
Mardis ER. The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics. 2008;24(3):133-141. doi:10.1016/j.tig.2007.12.007
98.
Ideker T, Galitski T, Hood L. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2001;2(1):343-372. doi:10.1146/annurev.genom.2.1.343
99.
Tyson JJ, Chen K, Novak B. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2001;2(12):908-916. doi:10.1038/35103078
100.
Bruggeman FJ, Westerhoff HV. The Nature of Systems Biology. Trends in Microbiology. 2007;15(1):45-50. doi:10.1016/j.tim.2006.11.003
101.
Aloy P, Russell RB. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 2005;579(8):1854-1858. doi:10.1016/j.febslet.2005.02.014
102.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991-1000. doi:10.1038/nature06525
103.
Choudhary C, Mann M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 2010;11(6):427-439. doi:10.1038/nrm2900
104.
Domon B, Aebersold R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 2010;28(7):710-721. doi:10.1038/nbt.1661
105.
Foster LJ, de Hoog CL. A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 2006;125(1):187-199. doi:10.1016/j.cell.2006.03.022
106.
Olsen JV, Blagoev B, al E. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell. 2006;127(3):635-648. doi:10.1016/j.cell.2006.09.026
107.
Oppermann FS, Gnad F, al E. Large-Scale Proteomics Analysis of the Human Kinome. Molecular & Cellular Proteomics. 2009;8(7):1751-1764. doi:10.1074/mcp.M800588-MCP200
108.
Pan C, Olsen JV, Daub H, Mann M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 2009;8(12):2796-2808. doi:10.1074/mcp.M900285-MCP200
109.
Olsen JV, Vermeulen M, al E. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling. 2010;3(104). http://stke.sciencemag.org/content/3/104/ra3
110.
Matsuoka S, Ballif BA. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science (New York, NY). 2007;316(5828):1160-1166. http://www.jstor.org/stable/20036331
111.
Danial NN, Gramm CF, al E. BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis. Nature. 2003;424(6951):952-956. doi:10.1038/nature01825
112.
Gstaiger M, Aebersold R. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 2009;10(9):617-627. doi:10.1038/nrg2633
113.
Aebersold R. Quantitative Proteomics. Published online 2008. https://hstalks.com/t/949/quantitative-proteomics/
114.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198-207. doi:10.1038/nature01511
115.
Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 2006;312(5771):212-217. doi:10.1126/science.1124619
116.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295-320. doi:10.1093/bfgp/eli002
117.
Gary Siuzdak. The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr; 2003.
118.
Proteomics Analysis Step by Step Tutorial Educative File. https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=97161
119.
Balog J, Sasi-Szabo L. Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Science Translational Medicine. 2013;5(194):194ra93-194ra93. doi:10.1126/scitranslmed.3005623
120.
Boersema PJ, Kahraman A, Picotti P. Proteomics Beyond Large-Scale Protein Expression Analysis. Current Opinion in Biotechnology. 2015;34:162-170. doi:10.1016/j.copbio.2015.01.005
121.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198-207. doi:10.1038/nature01511
122.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295-320. doi:10.1093/bfgp/eli002
123.
Cox J, Mann M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 2011;80(1):273-299. doi:10.1146/annurev-biochem-061308-093216
124.
Geiger T, Wehner A. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics. 2012;11(3). doi:10.1074/mcp.M111.014050
125.
Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 2006;312(5771):212-217. doi:10.1126/science.1124619
126.
Ahn NG, Shabb JB, Old WM, Resing KA. Achieving In-Depth Proteomics Profiling by Mass Spectrometry. ACS Chemical Biology. 2007;2(1):39-52. doi:10.1021/cb600357d
127.
Chen X, Sun L. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 2007;4(1):25-37. doi:10.1586/14789450.4.1.25
128.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991-1000. doi:10.1038/nature06525
129.
Han X, Aslanian A, Yates JR. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 2008;12(5):483-490. doi:10.1016/j.cbpa.2008.07.024
130.
Ansong C, Purvine SO. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 2008;7(1):50-62. doi:10.1093/bfgp/eln010
131.
Center for Metabolomics and Mass Spectrometry | Scripps Research. https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html
132.
Mass Spectrometry Facility. http://www.chm.bris.ac.uk/ms/mshome.xhtml
133.
Ashcroft DAE. An Introduction to Mass Spectrometry. http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm
134.
Peptide Mass Fingerprinting an IonSource Tutorial. http://www.ionsource.com/tutorial/
135.
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia. https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics
136.
About Mass Spec. https://www.asms.org/about-mass-spectrometry
137.
Mass Spectrometry - FTICR. Published online 2006. https://www.youtube.com/watch?v=a5aLlm9q-Xc
138.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198-207. doi:10.1038/nature01511
139.
Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 2006;312(5771):212-217. doi:10.1126/science.1124619
140.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295-320. doi:10.1093/bfgp/eli002
141.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991-1000. doi:10.1038/nature06525
142.
Bantscheff M, Schirle M, al E. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Analytical and Bioanalytical Chemistry. 2007;389(4):1017-1031. doi:10.1007/s00216-007-1486-6
143.
Coombs KM, Berard A. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 2010;84(20):10888-10906. doi:10.1128/JVI.00431-10
144.
Domon B, Aebersold R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 2010;28(7):710-721. doi:10.1038/nbt.1661
145.
Geiger T, Cox J. Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue. Nature Methods. 2010;7(5):383-385. doi:10.1038/nmeth.1446
146.
Bindschedler LV, Cramer R. Quantitative Plant Proteomics. Proteomics. 2011;11(4):756-775. doi:10.1002/pmic.201000426
147.
Nikolov M, Schmidt C, Urlaub H. Quantitative Mass Spectrometry-Based Proteomics: An Overview. In: Quantitative Methods in Proteomics. Vol Methods in molecular biology. Humana Press; 2012:85-100.
148.
Lesur A, Domon B. Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics. Proteomics. 2015;15(5-6):880-890. doi:10.1002/pmic.201400450
149.
Larance M, Lamond AI. Multidimensional Proteomics for Cell Biology. Nature Reviews Molecular Cell Biology. 2015;16(5):269-280. doi:10.1038/nrm3970
150.
Canas B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 2006;4(4):295-320. doi:10.1093/bfgp/eli002
151.
Cox J, Mann M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 2011;80(1):273-299. doi:10.1146/annurev-biochem-061308-093216
152.
Bindschedler LV, Cramer R. Quantitative Plant Proteomics. Proteomics. 2011;11(4):756-775. doi:10.1002/pmic.201000426
153.
Nikolov M, Schmidt C, Urlaub H. Quantitative Mass Spectrometry-Based Proteomics: An Overview. In: Quantitative Methods in Proteomics. Vol Methods in molecular biology. Humana Press; 2012:85-100.
154.
Geiger T, Wehner A. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics. 2012;11(3). doi:10.1074/mcp.M111.014050
155.
Chen X, Sun L. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 2007;4(1):25-37. doi:10.1586/14789450.4.1.25
156.
Han X, Aslanian A, Yates JR. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 2008;12(5):483-490. doi:10.1016/j.cbpa.2008.07.024
157.
Ansong C, Purvine SO. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 2008;7(1):50-62. doi:10.1093/bfgp/eln010
158.
Schreiber TB, Mausbacher N. An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling. Molecular & Cellular Proteomics. 2010;9(6):1047-1062. doi:10.1074/mcp.M900486-MCP200
159.
Macek B, Mann M, Olsen JV. Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology. 2009;49(1):199-221. doi:10.1146/annurev.pharmtox.011008.145606
160.
Engholm-Keller K, Birck P. TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC. Journal of Proteomics. 2012;75(18):5749-5761. doi:10.1016/j.jprot.2012.08.007
161.
Engholm-Keller K, Larsen MR. Technologies and Challenges in Large-Scale Phosphoproteomics. Proteomics. 2013;13(6):910-931. doi:10.1002/pmic.201200484
162.
Palumbo AM, Smith SA. Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrometry Reviews. 2011;30(4):600-625. doi:10.1002/mas.20310
163.
Nilsson CL. Advances in Quantitative Phosphoproteomics. Analytical Chemistry. 2012;84(2):735-746. doi:10.1021/ac202877y
164.
Coombs KM, Berard A. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 2010;84(20):10888-10906. doi:10.1128/JVI.00431-10
165.
Suter B, Kittanakom S, Stagljar I. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 2008;19(4):316-323. doi:10.1016/j.copbio.2008.06.005
166.
Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 2012;58(4):392-399. doi:10.1016/j.ymeth.2012.07.015
167.
Petschnigg J, Snider J, Stagljar I. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 2011;22(1):50-58. doi:10.1016/j.copbio.2010.09.001
168.
Rual JF, Venkatesan K. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 2005;437(7062):1173-1178. doi:10.1038/nature04209
169.
Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2012;2(3):454-461. doi:10.1016/j.celrep.2012.08.017
170.
Puig O, Caspary F. The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods. 2001;24(3):218-229. doi:10.1006/meth.2001.1183
171.
Thingholm TE, Jensen ON. SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics: Mcp. 2008;7(4):661-671. doi:10.1074/mcp.M700362-MCP200
172.
Benschop JJ, Mohammed S. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular & Cellular Proteomics : Mcp. 2007;6(7):1198-1214. doi:10.1074/mcp.M600429-MCP200
173.
Ummanni R, Mundt F, Balabanov S. Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS ONE. 2011;6(2). doi:10.1371/journal.pone.0016833
174.
Foster LJ, De Hoog CL, Mann M. Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2003;100(10):5813-5818. http://www.jstor.org/stable/3147499
175.
Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 2012;58(4):392-399. doi:10.1016/j.ymeth.2012.07.015
176.
Petschnigg J, Snider J, Stagljar I. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 2011;22(1):50-58. doi:10.1016/j.copbio.2010.09.001
177.
Steckelberg AL, Boehm V, Gromadzka AM, Gehring NH. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2012;2(3):454-461. doi:10.1016/j.celrep.2012.08.017
178.
Suter B, Kittanakom S, Stagljar I. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 2008;19(4):316-323. doi:10.1016/j.copbio.2008.06.005
179.
Rual JF, Venkatesan K. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 2005;437(7062):1173-1178. doi:10.1038/nature04209
180.
Zhang WJ, Pedersen C, al E. Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c. Molecular Plant Pathology. 2012;13(9):1110-1119. doi:10.1111/j.1364-3703.2012.00820.x
181.
Ahrens CH, Brunner E, al E. Generating and Navigating Proteome Maps Using Mass Spectrometry. Nature Reviews Molecular Cell Biology. 2010;11(11):789-801. doi:10.1038/nrm2973
182.
Cox J, Mann M. Is Proteomics the New Genomics? Cell. 2007;130(3):395-398. doi:10.1016/j.cell.2007.07.032
183.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991-1000. doi:10.1038/nature06525
184.
Choudhary C, Mann M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 2010;11(6):427-439. doi:10.1038/nrm2900
185.
Domon B, Aebersold R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 2010;28(7):710-721. doi:10.1038/nbt.1661
186.
Foster LJ, de Hoog CL. A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 2006;125(1):187-199. doi:10.1016/j.cell.2006.03.022
187.
Olsen JV, Vermeulen M, al E. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling. 2010;3(104). http://stke.sciencemag.org/content/3/104/ra3
188.
Keck JM, Jones MH. A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science. 2011;332(6037):1557-1561. doi:10.1126/science.1205193
189.
Santamaria A, Wang B. The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular & Cellular Proteomics. 2011;10(1):M110.004457-M110.004457. doi:10.1074/mcp.M110.004457
190.
Pan C, Olsen JV, Daub H, Mann M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 2009;8(12):2796-2808. doi:10.1074/mcp.M900285-MCP200
191.
Bisson N, James DA. Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor. Nature Biotechnology. 2011;29(7):653-658. doi:10.1038/nbt.1905
192.
Liu Y, Aebersold R. The Interdependence of Transcript and Protein Abundance: New Data-New Complexities. Molecular Systems Biology. 2016;12(1):856-856. doi:10.15252/msb.20156720
193.
Leitner A, Faini M, Stengel F, Aebersold R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences. 2016;41(1):20-32. doi:10.1016/j.tibs.2015.10.008
194.
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of Targeted Proteomics in Systems Biology and Translational Medicine. Proteomics. 2015;15(18):3193-3208. doi:10.1002/pmic.201500004
195.
Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 2003;422(6928):198-207. doi:10.1038/nature01511
196.
Cox J, Mann M. Is Proteomics the New Genomics? Cell. 2007;130(3):395-398. doi:10.1016/j.cell.2007.07.032
197.
Cravatt BF, Simon GM, Yates III JR. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 2007;450(7172):991-1000. doi:10.1038/nature06525
198.
Gstaiger M, Aebersold R. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 2009;10(9):617-627. doi:10.1038/nrg2633
199.
Steen H, Mann M. The ABC’s (And XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology. 2004;5(9):699-711. doi:10.1038/nrm1468
200.
Gary Siuzdak. The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr; 2003.
201.
What is Mass Spectrometry? https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec