1.
Zvelebil, M.J., Baum, J.O.: Understanding Bioinformatics. Garland Science, New York (2008).
2.
Zvelebil, M.J., Baum, J.O.: Protein Structure. In: Understanding Bioinformatics. Garland Science, New York (2008).
3.
Zvelebil, M.J., Baum, J.O.: Dealing with Databases. In: Understanding Bioinformatics. Garland Science, New York (2008).
4.
Zvelebil, M.J., Baum, J.O.: Revealing Genome Features. In: Understanding Bioinformatics. Garland Science, New York (2008).
5.
Zvelebil, M.J., Baum, J.O.: Gene Detection and Genome Annotation. In: Understanding Bioinformatics. Garland Science, New York (2008).
6.
Zvelebil, M.J., Baum, J.O.: Predicting Secondary Structures. In: Understanding Bioinformatics. Garland Science, New York (2008).
7.
Zvelebil, M.J., Baum, J.O.: Analyzing Structure-Function Relationships. In: Understanding Bioinformatics. Garland Science, New York (2008).
8.
Zvelebil, M.J., Baum, J.O.: Proteome and Gene Expression Analysis. In: Understanding Bioinformatics. Garland Science, New York (2008).
9.
Zvelebil, M.J., Baum, J.O.: Systems Biology. In: Understanding Bioinformatics. Garland Science, New York (2008).
10.
Baker, D., Sali, A.: Protein Structure Prediction and Structural Genomics. Science. 294, 93–96 (2001). https://doi.org/10.1126/science.1065659.
11.
Hughes, T.R., Marton, M.J.: Functional Discovery via a Compendium of Expression Profiles. Cell. 102, 109–126 (2000). https://doi.org/10.1016/S0092-8674(00)00015-5.
12.
Goldsmith-Fischman, S., Honig, B.: Structural Genomics: Computational Methods for Structure Analysis. Protein Science. 12, 1813–1821 (2003). https://doi.org/10.1110/ps.0242903.
13.
Jung, J.W., Lee, W.: Structure-Based Functional Discovery of Proteins: Structural Proteomics. Journal of Biochemistry and Molecular Biology. 37, 28–34 (2004).
14.
Smith, R.S., Gutierrez-Arcelus, M.: Structural Diversity of the Human Genome and Disease Susceptibility. (2008). https://doi.org/10.1002/9780470015902.a0020764.
15.
Rockett, J.C., Dix, D.J.: Gene Expression Networks. (2006). https://doi.org/10.1038/npg.els.0005280.
16.
Stubbs, A.P., Van Yper, S.J.L., van der Spek, P.J.: Microarray Bioinformatics. (2008). https://doi.org/10.1002/9780470015902.a0005957.pub2.
17.
Rank, D.R., Hanzel, D.K.: Microarrays: Use in Gene Identification. (2006). https://doi.org/10.1038/npg.els.0005952.
18.
Brazma, A., Sarkans, U.: Gene Expression Databases. (2007). https://doi.org/10.1002/9780470015902.a0005248.pub2.
19.
Yates, J.R., Link, A.J.: Direct Analysis of Protein Complexes Using Mass Spectrometry. Nature Biotechnology. 17, 676–682 (1999). https://doi.org/10.1038/10890.
20.
Makałowski, W., Shabardina, V., Makałowska, I.: Bioinformatics. In: Encyclopedia of Life Sciences. pp. 1–9. Wiley Interscience (2018). https://doi.org/10.1002/9780470015902.a0005247.pub3.
21.
Altschul, S.F., Boguski, M.S., Gish, W., Wootton, J.C.: Issues in Searching Molecular Sequence Databases. Nature Genetics. 6, 119–129 (1994).
22.
Mathé, C., Sagot, M.-F.: Current Methods of Gene Prediction, Their Strengths and Weaknesses. Nucleic Acids Research. 30, 4103–4117 (2002). https://doi.org/10.1093/nar/gkf543.
23.
Sonnhammer, E.L., Eddy, S.R.: Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains. Nucleic Acids Research. 26, 320–322 (1998). https://doi.org/10.1093/nar/26.1.320.
24.
Apweiler, R., Attwood, T.K.: The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Nucleic Acids Research. 29, 37–40 (2001). https://doi.org/10.1093/nar/29.1.37.
25.
Pavy, N., Leroy, P.: Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences. Bioinformatics. 15, 887–899 (1999). https://doi.org/10.1093/bioinformatics/15.11.887.
26.
Katoh, M., Kato, M.: Comparative Genomics between Drosophila and Human [open access]. Genome Informatics. 14, 587–588 (2003).
27.
Tohge, T., Fernie, A.R.: Co-Expression and Co-Responses: Within and Beyond Transcription. Frontiers in Plant Science. 3, (2012). https://doi.org/10.3389/fpls.2012.00248.
28.
Murray, D., Doran, P., MacMathuna, P., Moss, A.C.: In Silico Gene Expression Analysis – an Overview. Molecular Cancer. 6, (2007). https://doi.org/10.1186/1476-4598-6-50.
29.
Sakuma, Y., Maruyama, K.: Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States. 103, 18822–18827 (2006). https://doi.org/10.1073/pnas.0605639103.
30.
Zilberman, D., Henikoff, S.: Epigenetic Inheritance in Arabidopsis: Selective Silence. Current Opinion in Genetics & Development. 15, 557–562 (2005). https://doi.org/10.1016/j.gde.2005.07.002.
31.
Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals. Biological Chemistry Hoppe-Seyler. 377, 605–618 (1996). https://doi.org/10.1515/bchm3.1996.377.10.605.
32.
Soppe, W.J.J., Jacobsen, S.E., al, E.: The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell. 6, 791–802 (2000). https://doi.org/10.1016/S1097-2765(05)00090-0.
33.
Weigel, D., Ahn, J.H.: Activation Tagging in Arabidopsis. Plant Physiology. 122, 1003–1013 (2000).
34.
Mansouri, A.: Knockout and Knock-in Animals. (2005). https://doi.org/10.1038/npg.els.0003840.
35.
Goljanek-Whysall, K., Sweetman, D.: Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology). Proceedings of the National Academy of Sciences of the United States. 108, 11936–11941 (2011).
36.
Eamens, A., Wang, M.-B.: RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology. 147, 456–468 (2008).
37.
E. Nicolas, F., Lopez-Gomollon, S., F. Lopez-Martinez, A., Dalmay, T.: Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery. 6, 94–105 (2011). https://doi.org/10.2174/157489211793980033.
38.
Hannon, G.J.: RNA Interference. Nature. 418, 244–251 (2002). https://doi.org/10.1038/418244a.
39.
Tuschl, T.: Functional Genomics: RNA Sets the Standard. Nature. 421, 220–221 (2003). https://doi.org/10.1038/421220a.
40.
Silva, J.M., Hammond, S.M., Hannon, G.J.: RNA Interference: A Promising Approach to Antiviral Therapy? Trends in Molecular Medicine. 8, 505–508 (2002). https://doi.org/10.1016/S1471-4914(02)02421-8.
41.
Meyer, P.: Gene Silencing in Plants. (2006). https://doi.org/10.1002/9780470015902.a0002022.pub2.
42.
Jacque, J.-M., Triques, K., Stevenson, M.: Modulation of HIV-1 Replication by RNA Interference. Nature. 418, 435–438 (2002). https://doi.org/10.1038/nature00896.
43.
Latchman, D.S.: Transcription Factors. (2007). https://doi.org/10.1002/9780470015902.a0005278.pub2.
44.
Mitchell, P.J., Tjian, R.: Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 245, 371–378 (1989). https://doi.org/10.1126/science.2667136.
45.
Semenza, G.L.: Transcription Factors and Human Disorders. (2005). https://doi.org/10.1038/npg.els.0005504.
46.
Latchman, D.S.: Transcriptional Gene Regulation in Eukaryotes. (2005). https://doi.org/10.1002/9780470015902.a0002322.pub2.
47.
Gehring, W.J., Ikeo, K.: Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 15, 371–377 (1999). https://doi.org/10.1016/S0168-9525(99)01776-X.
48.
Knight, H., Knight, M.R.: Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 6, 262–267 (2001). https://doi.org/10.1016/S1360-1385(01)01946-X.
49.
Zhu, J.-K.: Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 53, 247–273 (2002). https://doi.org/10.1146/annurev.arplant.53.091401.143329.
50.
Singh, K.: Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 5, 430–436 (2002). https://doi.org/10.1016/S1369-5266(02)00289-3.
51.
Devoto, A., Turner, J.G.: Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 123, 161–172 (2005). https://doi.org/10.1111/j.1399-3054.2004.00418.x.
52.
Matys, V., Fricke, E.: TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 31, 374–378 (2003). https://doi.org/10.1093/nar/gkg108.
53.
Latchman, D.S.: Transcription Factors. (2007). https://doi.org/10.1002/9780470015902.a0005278.pub2.
54.
Mitchell, P.J., Tjian, R.: Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science. 245, 371–378 (1989). https://doi.org/10.1126/science.2667136.
55.
Semenza, G.L.: Transcription Factors and Human Disorders. (2005). https://doi.org/10.1038/npg.els.0005504.
56.
Latchman, D.S.: Transcriptional Gene Regulation in Eukaryotes. (2005). https://doi.org/10.1002/9780470015902.a0002322.pub2.
57.
Gehring, W.J., Ikeo, K.: Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics. 15, 371–377 (1999). https://doi.org/10.1016/S0168-9525(99)01776-X.
58.
Knight, H., Knight, M.R.: Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 6, 262–267 (2001). https://doi.org/10.1016/S1360-1385(01)01946-X.
59.
Zhu, J.-K.: Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 53, 247–273 (2002). https://doi.org/10.1146/annurev.arplant.53.091401.143329.
60.
Singh, K.: Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 5, 430–436 (2002). https://doi.org/10.1016/S1369-5266(02)00289-3.
61.
Devoto, A., Turner, J.G.: Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum. 123, 161–172 (2005). https://doi.org/10.1111/j.1399-3054.2004.00418.x.
62.
Matys, V., Fricke, E.: TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 31, 374–378 (2003). https://doi.org/10.1093/nar/gkg108.
63.
Zerbino, D.R., Paten, B., Haussler, D.: Integrating Genomes. Science. 336, 179–182 (2012). https://doi.org/10.1126/science.1216830.
64.
Kitano, H.: Computational Systems Biology. Nature. 420, 206–210 (2002). https://doi.org/10.1038/nature01254.
65.
Ideker, T., Galitski, T., Hood, L.: A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2, 343–372 (2001). https://doi.org/10.1146/annurev.genom.2.1.343.
66.
Tyson, J.J., Chen, K., Novak, B.: Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2, 908–916 (2001). https://doi.org/10.1038/35103078.
67.
Bruggeman, F.J., Westerhoff, H.V.: The Nature of Systems Biology. Trends in Microbiology. 15, 45–50 (2007). https://doi.org/10.1016/j.tim.2006.11.003.
68.
Aloy, P., Russell, R.B.: Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 579, 1854–1858 (2005). https://doi.org/10.1016/j.febslet.2005.02.014.
69.
Harbison, C.T., Gordon, D.B., Young, R.A.: Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 431, 99–104 (2004). https://doi.org/10.1038/nature02800.
70.
Jen, C.-H., Manfield, I.W.: The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 46, 336–348 (2006). https://doi.org/10.1111/j.1365-313X.2006.02681.x.
71.
Oltvai, Z.N., Barabási, A.-L.: Systems Biology. Life’s Complexity Pyramid. Science (New York, N.Y.). 298, 763–764 (2002). https://doi.org/10.1126/science.1078563.
72.
Nemhauser, J.L., Hong, F., Chory, J.: Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 126, 467–475 (2006). https://doi.org/10.1016/j.cell.2006.05.050.
73.
Legrain, P.: Protein-Protein Interaction Maps. Encyclopedia of life sciences. (2006). https://doi.org/10.1002/9780470015902.a0006205.
74.
Krogan, N.J., Cagney, G.: Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 440, 637–643 (2006). https://doi.org/10.1038/nature04670.
75.
Von Mering, C., Jensen, L.J.: STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 33, D433–D437 (2005). https://doi.org/10.1093/nar/gki005.
76.
Pieroni, E., de la Fuente van Bentem, S.: Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 8, 799–816 (2008). https://doi.org/10.1002/pmic.200700767.
77.
Bork, P., Jensen, L.J.: Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 14, 292–299 (2004). https://doi.org/10.1016/j.sbi.2004.05.003.
78.
Jensen, L.J., Kuhn, M.: STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 37, D412–D416 (2009). https://doi.org/10.1093/nar/gkn760.
79.
Jen, C.-H., Manfield, I.W.: The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal. 46, 336–348 (2006). https://doi.org/10.1111/j.1365-313X.2006.02681.x.
80.
Oltvai, Z.N.: Systems Biology: Life’s Complexity Pyramid. Science. 298, 763–764 (2002). https://doi.org/10.1126/science.1078563.
81.
Nemhauser, J.L., Hong, F., Chory, J.: Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 126, 467–475 (2006). https://doi.org/10.1016/j.cell.2006.05.050.
82.
Legrain, P.: Protein-Protein Interaction Maps. eLS. (2006).
83.
Krogan, N.J., Cagney, G.: Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature. 440, 637–643 (2006). https://doi.org/10.1038/nature04670.
84.
Von Mering, C., Jensen, L.J.: STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research. 33, D433–D437 (2005). https://doi.org/10.1093/nar/gki005.
85.
Pieroni, E., de la Fuente van Bentem, S.: Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics. 8, 799–816 (2008). https://doi.org/10.1002/pmic.200700767.
86.
Bork, P., Jensen, L.J.: Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology. 14, 292–299 (2004). https://doi.org/10.1016/j.sbi.2004.05.003.
87.
Jensen, L.J., Kuhn, M.: STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research. 37, D412–D416 (2009). https://doi.org/10.1093/nar/gkn760.
88.
Massie, C.E., Mills, I.G.: ChIPping Away at Gene Regulation. EMBO Reports. 9, 337–343 (2008). https://doi.org/10.1038/embor.2008.44.
89.
Harbison, C.T., Gordon, D.B., Young, R.A.: Transcriptional Regulatory Code of a Eukaryotic Genome. Nature. 431, 99–104 (2004). https://doi.org/10.1038/nature02800.
90.
Ren, B., Dynlacht, B.D.: Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Chromatin and Chromatin Remodeling Enzymes, Part B. 376, 304–315 (2003).
91.
Ren, B., Robert, F.: Genome-Wide Location and Function of DNA Binding Proteins. Science. 290, 2306–2309 (2000). https://doi.org/10.1126/science.290.5500.2306.
92.
Mardis, E.R.: ChIP-Seq: Welcome to the New Frontier. Nature Methods. 4, 613–614 (2007). https://doi.org/10.1038/nmeth0807-613.
93.
Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B.: Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science (New York, N.Y.). 316, 1497–1502 (2007). https://doi.org/10.1126/science.1141319.
94.
Mardis, E.R.: Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics. 9, 387–402 (2008). https://doi.org/10.1146/annurev.genom.9.081307.164359.
95.
Metzker, M.L.: Emerging Technologies in DNA Sequencing. Genome Research. 15, 1767–1776 (2005). https://doi.org/10.1101/gr.3770505.
96.
Amaral, A.J., Megens, H.-J.: Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome. BMC Genomics. 10, (2009). https://doi.org/10.1186/1471-2164-10-374.
97.
Mardis, E.R.: The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics. 24, 133–141 (2008). https://doi.org/10.1016/j.tig.2007.12.007.
98.
Ideker, T., Galitski, T., Hood, L.: A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics. 2, 343–372 (2001). https://doi.org/10.1146/annurev.genom.2.1.343.
99.
Tyson, J.J., Chen, K., Novak, B.: Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology. 2, 908–916 (2001). https://doi.org/10.1038/35103078.
100.
Bruggeman, F.J., Westerhoff, H.V.: The Nature of Systems Biology. Trends in Microbiology. 15, 45–50 (2007). https://doi.org/10.1016/j.tim.2006.11.003.
101.
Aloy, P., Russell, R.B.: Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters. 579, 1854–1858 (2005). https://doi.org/10.1016/j.febslet.2005.02.014.
102.
Cravatt, B.F., Simon, G.M., Yates III, J.R.: The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 991–1000 (2007). https://doi.org/10.1038/nature06525.
103.
Choudhary, C., Mann, M.: Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 11, 427–439 (2010). https://doi.org/10.1038/nrm2900.
104.
Domon, B., Aebersold, R.: Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 28, 710–721 (2010). https://doi.org/10.1038/nbt.1661.
105.
Foster, L.J., de Hoog, C.L.: A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 125, 187–199 (2006). https://doi.org/10.1016/j.cell.2006.03.022.
106.
Olsen, J.V., Blagoev, B., al, E.: Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell. 127, 635–648 (2006). https://doi.org/10.1016/j.cell.2006.09.026.
107.
Oppermann, F.S., Gnad, F., al, E.: Large-Scale Proteomics Analysis of the Human Kinome. Molecular & Cellular Proteomics. 8, 1751–1764 (2009). https://doi.org/10.1074/mcp.M800588-MCP200.
108.
Pan, C., Olsen, J.V., Daub, H., Mann, M.: Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 8, 2796–2808 (2009). https://doi.org/10.1074/mcp.M900285-MCP200.
109.
Olsen, J.V., Vermeulen, M., al, E.: Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling. 3, (2010).
110.
Matsuoka, S., Ballif, B.A.: ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science (New York, N.Y.). 316, 1160–1166 (2007).
111.
Danial, N.N., Gramm, C.F., al, E.: BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis. Nature. 424, 952–956 (2003). https://doi.org/10.1038/nature01825.
112.
Gstaiger, M., Aebersold, R.: Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 10, 617–627 (2009). https://doi.org/10.1038/nrg2633.
113.
Aebersold, R.: Quantitative Proteomics, https://hstalks.com/t/949/quantitative-proteomics/, (2008).
114.
Aebersold, R., Mann, M.: Mass Spectrometry-Based Proteomics. Nature. 422, 198–207 (2003). https://doi.org/10.1038/nature01511.
115.
Domon, B., Aebersold, R.: Mass Spectrometry and Protein Analysis. Science. 312, 212–217 (2006). https://doi.org/10.1126/science.1124619.
116.
Canas, B.: Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 295–320 (2006). https://doi.org/10.1093/bfgp/eli002.
117.
Gary Siuzdak: The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr (2003).
118.
Proteomics Analysis Step by Step Tutorial Educative File, https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=97161.
119.
Balog, J., Sasi-Szabo, L.: Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Science Translational Medicine. 5, 194ra93-194ra93 (2013). https://doi.org/10.1126/scitranslmed.3005623.
120.
Boersema, P.J., Kahraman, A., Picotti, P.: Proteomics Beyond Large-Scale Protein Expression Analysis. Current Opinion in Biotechnology. 34, 162–170 (2015). https://doi.org/10.1016/j.copbio.2015.01.005.
121.
Aebersold, R., Mann, M.: Mass Spectrometry-Based Proteomics. Nature. 422, 198–207 (2003). https://doi.org/10.1038/nature01511.
122.
Canas, B.: Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 295–320 (2006). https://doi.org/10.1093/bfgp/eli002.
123.
Cox, J., Mann, M.: Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 80, 273–299 (2011). https://doi.org/10.1146/annurev-biochem-061308-093216.
124.
Geiger, T., Wehner, A.: Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics. 11, (2012). https://doi.org/10.1074/mcp.M111.014050.
125.
Domon, B., Aebersold, R.: Mass Spectrometry and Protein Analysis. Science. 312, 212–217 (2006). https://doi.org/10.1126/science.1124619.
126.
Ahn, N.G., Shabb, J.B., Old, W.M., Resing, K.A.: Achieving In-Depth Proteomics Profiling by Mass Spectrometry. ACS Chemical Biology. 2, 39–52 (2007). https://doi.org/10.1021/cb600357d.
127.
Chen, X., Sun, L.: Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 4, 25–37 (2007). https://doi.org/10.1586/14789450.4.1.25.
128.
Cravatt, B.F., Simon, G.M., Yates III, J.R.: The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 991–1000 (2007). https://doi.org/10.1038/nature06525.
129.
Han, X., Aslanian, A., Yates, J.R.: Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 12, 483–490 (2008). https://doi.org/10.1016/j.cbpa.2008.07.024.
130.
Ansong, C., Purvine, S.O.: Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 7, 50–62 (2008). https://doi.org/10.1093/bfgp/eln010.
131.
Center for Metabolomics and Mass Spectrometry | Scripps Research, https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html.
132.
Mass Spectrometry Facility, http://www.chm.bris.ac.uk/ms/mshome.xhtml.
133.
Ashcroft, D.A.E.: An Introduction to Mass Spectrometry, http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm.
134.
Peptide Mass Fingerprinting an IonSource Tutorial, http://www.ionsource.com/tutorial/.
135.
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia, https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics.
136.
About Mass Spec, https://www.asms.org/about-mass-spectrometry.
137.
Mass Spectrometry - FTICR, https://www.youtube.com/watch?v=a5aLlm9q-Xc, (2006).
138.
Aebersold, R., Mann, M.: Mass Spectrometry-Based Proteomics. Nature. 422, 198–207 (2003). https://doi.org/10.1038/nature01511.
139.
Domon, B., Aebersold, R.: Mass Spectrometry and Protein Analysis. Science. 312, 212–217 (2006). https://doi.org/10.1126/science.1124619.
140.
Canas, B.: Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 295–320 (2006). https://doi.org/10.1093/bfgp/eli002.
141.
Cravatt, B.F., Simon, G.M., Yates III, J.R.: The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 991–1000 (2007). https://doi.org/10.1038/nature06525.
142.
Bantscheff, M., Schirle, M., al, E.: Quantitative Mass Spectrometry in Proteomics: A Critical Review. Analytical and Bioanalytical Chemistry. 389, 1017–1031 (2007). https://doi.org/10.1007/s00216-007-1486-6.
143.
Coombs, K.M., Berard, A.: Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 84, 10888–10906 (2010). https://doi.org/10.1128/JVI.00431-10.
144.
Domon, B., Aebersold, R.: Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 28, 710–721 (2010). https://doi.org/10.1038/nbt.1661.
145.
Geiger, T., Cox, J.: Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue. Nature Methods. 7, 383–385 (2010). https://doi.org/10.1038/nmeth.1446.
146.
Bindschedler, L.V., Cramer, R.: Quantitative Plant Proteomics. Proteomics. 11, 756–775 (2011). https://doi.org/10.1002/pmic.201000426.
147.
Nikolov, M., Schmidt, C., Urlaub, H.: Quantitative Mass Spectrometry-Based Proteomics: An Overview. In: Quantitative Methods in Proteomics. pp. 85–100. Humana Press, New York (2012).
148.
Lesur, A., Domon, B.: Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics. Proteomics. 15, 880–890 (2015). https://doi.org/10.1002/pmic.201400450.
149.
Larance, M., Lamond, A.I.: Multidimensional Proteomics for Cell Biology. Nature Reviews Molecular Cell Biology. 16, 269–280 (2015). https://doi.org/10.1038/nrm3970.
150.
Canas, B.: Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics. 4, 295–320 (2006). https://doi.org/10.1093/bfgp/eli002.
151.
Cox, J., Mann, M.: Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry. 80, 273–299 (2011). https://doi.org/10.1146/annurev-biochem-061308-093216.
152.
Bindschedler, L.V., Cramer, R.: Quantitative Plant Proteomics. Proteomics. 11, 756–775 (2011). https://doi.org/10.1002/pmic.201000426.
153.
Nikolov, M., Schmidt, C., Urlaub, H.: Quantitative Mass Spectrometry-Based Proteomics: An Overview. In: Quantitative Methods in Proteomics. pp. 85–100. Humana Press, New York (2012).
154.
Geiger, T., Wehner, A.: Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics. 11, (2012). https://doi.org/10.1074/mcp.M111.014050.
155.
Chen, X., Sun, L.: Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics. 4, 25–37 (2007). https://doi.org/10.1586/14789450.4.1.25.
156.
Han, X., Aslanian, A., Yates, J.R.: Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology. 12, 483–490 (2008). https://doi.org/10.1016/j.cbpa.2008.07.024.
157.
Ansong, C., Purvine, S.O.: Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics. 7, 50–62 (2008). https://doi.org/10.1093/bfgp/eln010.
158.
Schreiber, T.B., Mausbacher, N.: An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling. Molecular & Cellular Proteomics. 9, 1047–1062 (2010). https://doi.org/10.1074/mcp.M900486-MCP200.
159.
Macek, B., Mann, M., Olsen, J.V.: Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology. 49, 199–221 (2009). https://doi.org/10.1146/annurev.pharmtox.011008.145606.
160.
Engholm-Keller, K., Birck, P.: TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC. Journal of Proteomics. 75, 5749–5761 (2012). https://doi.org/10.1016/j.jprot.2012.08.007.
161.
Engholm-Keller, K., Larsen, M.R.: Technologies and Challenges in Large-Scale Phosphoproteomics. Proteomics. 13, 910–931 (2013). https://doi.org/10.1002/pmic.201200484.
162.
Palumbo, A.M., Smith, S.A.: Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrometry Reviews. 30, 600–625 (2011). https://doi.org/10.1002/mas.20310.
163.
Nilsson, C.L.: Advances in Quantitative Phosphoproteomics. Analytical Chemistry. 84, 735–746 (2012). https://doi.org/10.1021/ac202877y.
164.
Coombs, K.M., Berard, A.: Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology. 84, 10888–10906 (2010). https://doi.org/10.1128/JVI.00431-10.
165.
Suter, B., Kittanakom, S., Stagljar, I.: Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 19, 316–323 (2008). https://doi.org/10.1016/j.copbio.2008.06.005.
166.
Rajagopala, S.V., Sikorski, P., Caufield, J.H., Tovchigrechko, A., Uetz, P.: Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 58, 392–399 (2012). https://doi.org/10.1016/j.ymeth.2012.07.015.
167.
Petschnigg, J., Snider, J., Stagljar, I.: Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 22, 50–58 (2011). https://doi.org/10.1016/j.copbio.2010.09.001.
168.
Rual, J.-F., Venkatesan, K.: Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 437, 1173–1178 (2005). https://doi.org/10.1038/nature04209.
169.
Steckelberg, A.-L., Boehm, V., Gromadzka, A.M., Gehring, N.H.: CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2, 454–461 (2012). https://doi.org/10.1016/j.celrep.2012.08.017.
170.
Puig, O., Caspary, F.: The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods. 24, 218–229 (2001). https://doi.org/10.1006/meth.2001.1183.
171.
Thingholm, T.E., Jensen, O.N.: SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics: Mcp. 7, 661–671 (2008). https://doi.org/10.1074/mcp.M700362-MCP200.
172.
Benschop, J.J., Mohammed, S.: Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular & Cellular Proteomics : Mcp. 6, 1198–1214 (2007). https://doi.org/10.1074/mcp.M600429-MCP200.
173.
Ummanni, R., Mundt, F., Balabanov, S.: Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS ONE. 6, (2011). https://doi.org/10.1371/journal.pone.0016833.
174.
Foster, L.J., De Hoog, C.L., Mann, M.: Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors. Proceedings Of The National Academy Of Sciences Of The United States Of America. 100, 5813–5818 (2003).
175.
Rajagopala, S.V., Sikorski, P., Caufield, J.H., Tovchigrechko, A., Uetz, P.: Studying Protein Complexes by the Yeast Two-Hybrid System. Methods. 58, 392–399 (2012). https://doi.org/10.1016/j.ymeth.2012.07.015.
176.
Petschnigg, J., Snider, J., Stagljar, I.: Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology. 22, 50–58 (2011). https://doi.org/10.1016/j.copbio.2010.09.001.
177.
Steckelberg, A.-L., Boehm, V., Gromadzka, A.M., Gehring, N.H.: CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports. 2, 454–461 (2012). https://doi.org/10.1016/j.celrep.2012.08.017.
178.
Suter, B., Kittanakom, S., Stagljar, I.: Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology. 19, 316–323 (2008). https://doi.org/10.1016/j.copbio.2008.06.005.
179.
Rual, J.-F., Venkatesan, K.: Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature. 437, 1173–1178 (2005). https://doi.org/10.1038/nature04209.
180.
Zhang, W.-J., Pedersen, C., al, E.: Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c. Molecular Plant Pathology. 13, 1110–1119 (2012). https://doi.org/10.1111/j.1364-3703.2012.00820.x.
181.
Ahrens, C.H., Brunner, E., al, E.: Generating and Navigating Proteome Maps Using Mass Spectrometry. Nature Reviews Molecular Cell Biology. 11, 789–801 (2010). https://doi.org/10.1038/nrm2973.
182.
Cox, J., Mann, M.: Is Proteomics the New Genomics? Cell. 130, 395–398 (2007). https://doi.org/10.1016/j.cell.2007.07.032.
183.
Cravatt, B.F., Simon, G.M., Yates III, J.R.: The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 991–1000 (2007). https://doi.org/10.1038/nature06525.
184.
Choudhary, C., Mann, M.: Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology. 11, 427–439 (2010). https://doi.org/10.1038/nrm2900.
185.
Domon, B., Aebersold, R.: Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology. 28, 710–721 (2010). https://doi.org/10.1038/nbt.1661.
186.
Foster, L.J., de Hoog, C.L.: A Mammalian Organelle Map by Protein Correlation Profiling. Cell. 125, 187–199 (2006). https://doi.org/10.1016/j.cell.2006.03.022.
187.
Olsen, J.V., Vermeulen, M., al, E.: Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling. 3, (2010).
188.
Keck, J.M., Jones, M.H.: A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science. 332, 1557–1561 (2011). https://doi.org/10.1126/science.1205193.
189.
Santamaria, A., Wang, B.: The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular & Cellular Proteomics. 10, M110.004457-M110.004457 (2011). https://doi.org/10.1074/mcp.M110.004457.
190.
Pan, C., Olsen, J.V., Daub, H., Mann, M.: Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics. 8, 2796–2808 (2009). https://doi.org/10.1074/mcp.M900285-MCP200.
191.
Bisson, N., James, D.A.: Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor. Nature Biotechnology. 29, 653–658 (2011). https://doi.org/10.1038/nbt.1905.
192.
Liu, Y., Aebersold, R.: The Interdependence of Transcript and Protein Abundance: New Data-New Complexities. Molecular Systems Biology. 12, 856–856 (2016). https://doi.org/10.15252/msb.20156720.
193.
Leitner, A., Faini, M., Stengel, F., Aebersold, R.: Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences. 41, 20–32 (2016). https://doi.org/10.1016/j.tibs.2015.10.008.
194.
Ebhardt, H.A., Root, A., Sander, C., Aebersold, R.: Applications of Targeted Proteomics in Systems Biology and Translational Medicine. Proteomics. 15, 3193–3208 (2015). https://doi.org/10.1002/pmic.201500004.
195.
Aebersold, R., Mann, M.: Mass Spectrometry-Based Proteomics. Nature. 422, 198–207 (2003). https://doi.org/10.1038/nature01511.
196.
Cox, J., Mann, M.: Is Proteomics the New Genomics? Cell. 130, 395–398 (2007). https://doi.org/10.1016/j.cell.2007.07.032.
197.
Cravatt, B.F., Simon, G.M., Yates III, J.R.: The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature. 450, 991–1000 (2007). https://doi.org/10.1038/nature06525.
198.
Gstaiger, M., Aebersold, R.: Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics. 10, 617–627 (2009). https://doi.org/10.1038/nrg2633.
199.
Steen, H., Mann, M.: The ABC’s (And XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology. 5, 699–711 (2004). https://doi.org/10.1038/nrm1468.
200.
Gary Siuzdak: The Expanding Role of Mass Spectrometry in Biotechnology. Mcc Pr (2003).
201.
What is Mass Spectrometry?, https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec.