1.
Zvelebil, M. J. & Baum, J. O. Understanding Bioinformatics. (Garland Science, 2008).
2.
Zvelebil, M. J. & Baum, J. O. Protein Structure. in Understanding Bioinformatics (Garland Science, 2008).
3.
Zvelebil, M. J. & Baum, J. O. Dealing with Databases. in Understanding Bioinformatics (Garland Science, 2008).
4.
Zvelebil, M. J. & Baum, J. O. Revealing Genome Features. in Understanding Bioinformatics (Garland Science, 2008).
5.
Zvelebil, M. J. & Baum, J. O. Gene Detection and Genome Annotation. in Understanding Bioinformatics (Garland Science, 2008).
6.
Zvelebil, M. J. & Baum, J. O. Predicting Secondary Structures. in Understanding Bioinformatics (Garland Science, 2008).
7.
Zvelebil, M. J. & Baum, J. O. Analyzing Structure-Function Relationships. in Understanding Bioinformatics (Garland Science, 2008).
8.
Zvelebil, M. J. & Baum, J. O. Proteome and Gene Expression Analysis. in Understanding Bioinformatics (Garland Science, 2008).
9.
Zvelebil, M. J. & Baum, J. O. Systems Biology. in Understanding Bioinformatics (Garland Science, 2008).
10.
Baker, D. & Sali, A. Protein Structure Prediction and Structural Genomics. Science 294, 93–96 (2001).
11.
Hughes, T. R. & Marton, M. J. Functional Discovery via a Compendium of Expression Profiles. Cell 102, 109–126 (2000).
12.
Goldsmith-Fischman, S. & Honig, B. Structural Genomics: Computational Methods for Structure Analysis. Protein Science 12, 1813–1821 (2003).
13.
Jung, J. W. & Lee, W. Structure-Based Functional Discovery of Proteins: Structural Proteomics. Journal of Biochemistry and Molecular Biology 37, 28–34 (2004).
14.
Smith, R. S. & Gutierrez-Arcelus, M. Structural Diversity of the Human Genome and Disease Susceptibility. (2008) doi:10.1002/9780470015902.a0020764.
15.
Rockett, J. C. & Dix, D. J. Gene Expression Networks. (2006) doi:10.1038/npg.els.0005280.
16.
Stubbs, A. P., Van Yper, S. J. L. & van der Spek, P. J. Microarray Bioinformatics. (2008) doi:10.1002/9780470015902.a0005957.pub2.
17.
Rank, D. R. & Hanzel, D. K. Microarrays: Use in Gene Identification. (2006) doi:10.1038/npg.els.0005952.
18.
Brazma, A. & Sarkans, U. Gene Expression Databases. (2007) doi:10.1002/9780470015902.a0005248.pub2.
19.
Yates, J. R. & Link, A. J. Direct Analysis of Protein Complexes Using Mass Spectrometry. Nature Biotechnology 17, 676–682 (1999).
20.
Makałowski, W., Shabardina, V. & Makałowska, I. Bioinformatics. in Encyclopedia of Life Sciences 1–9 (Wiley Interscience, 2018). doi:10.1002/9780470015902.a0005247.pub3.
21.
Altschul, S. F., Boguski, M. S., Gish, W. & Wootton, J. C. Issues in Searching Molecular Sequence Databases. Nature Genetics 6, 119–129 (1994).
22.
Mathé, C. & Sagot, M.-F. Current Methods of Gene Prediction, Their Strengths and Weaknesses. Nucleic Acids Research 30, 4103–4117 (2002).
23.
Sonnhammer, E. L. & Eddy, S. R. Pfam: Multiple Sequence Alignments and HMM-Profiles of Protein Domains. Nucleic Acids Research 26, 320–322 (1998).
24.
Apweiler, R. & Attwood, T. K. The InterPro Database, an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Nucleic Acids Research 29, 37–40 (2001).
25.
Pavy, N. & Leroy, P. Evaluation of Gene Prediction Software Using a Genomic Data Set: Application to Arabidopsis Thaliana Sequences. Bioinformatics 15, 887–899 (1999).
26.
Katoh, M. & Kato, M. Comparative Genomics between Drosophila and Human [open access]. Genome Informatics 14, 587–588 (2003).
27.
Tohge, T. & Fernie, A. R. Co-Expression and Co-Responses: Within and Beyond Transcription. Frontiers in Plant Science 3, (2012).
28.
Murray, D., Doran, P., MacMathuna, P. & Moss, A. C. In Silico Gene Expression Analysis – an Overview. Molecular Cancer 6, (2007).
29.
Sakuma, Y. & Maruyama, K. Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States 103, 18822–18827 (2006).
30.
Zilberman, D. & Henikoff, S. Epigenetic Inheritance in Arabidopsis: Selective Silence. Current Opinion in Genetics & Development 15, 557–562 (2005).
31.
Genetic Analysis of Genomic Methylation Patterns in Plants and Mammals. Biological Chemistry Hoppe-Seyler 377, 605–618 (1996).
32.
Soppe, W. J. J., Jacobsen, S. E. & al, E. The Late Flowering Phenotype of Fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell 6, 791–802 (2000).
33.
Weigel, D. & Ahn, J. H. Activation Tagging in Arabidopsis. Plant Physiology 122, 1003–1013 (2000).
34.
Mansouri, A. Knockout and Knock-in Animals. (2005) doi:10.1038/npg.els.0003840.
35.
Goljanek-Whysall, K. & Sweetman, D. Microrna Regulation of the Paired-Box Transcription Factor Pax3 Confers Robustness to Developmental Timing of Myogenesis (Developmental Biology). Proceedings of the National Academy of Sciences of the United States 108, 11936–11941 (2011).
36.
Eamens, A. & Wang, M.-B. RNA Silencing in Plants: Yesterday, Today, and Tomorrow. Plant Physiology 147, 456–468 (2008).
37.
E. Nicolas, F., Lopez-Gomollon, S., F. Lopez-Martinez, A. & Dalmay, T. Silencing Human Cancer: Identification and Uses of MicroRNAs. Recent Patents on Anti-Cancer Drug Discovery 6, 94–105 (2011).
38.
Hannon, G. J. RNA Interference. Nature 418, 244–251 (2002).
39.
Tuschl, T. Functional Genomics: RNA Sets the Standard. Nature 421, 220–221 (2003).
40.
Silva, J. M., Hammond, S. M. & Hannon, G. J. RNA Interference: A Promising Approach to Antiviral Therapy? Trends in Molecular Medicine 8, 505–508 (2002).
41.
Meyer, P. Gene Silencing in Plants. (2006) doi:10.1002/9780470015902.a0002022.pub2.
42.
Jacque, J.-M., Triques, K. & Stevenson, M. Modulation of HIV-1 Replication by RNA Interference. Nature 418, 435–438 (2002).
43.
Latchman, D. S. Transcription Factors. (2007) doi:10.1002/9780470015902.a0005278.pub2.
44.
Mitchell, P. J. & Tjian, R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science 245, 371–378 (1989).
45.
Semenza, G. L. Transcription Factors and Human Disorders. (2005) doi:10.1038/npg.els.0005504.
46.
Latchman, D. S. Transcriptional Gene Regulation in Eukaryotes. (2005) doi:10.1002/9780470015902.a0002322.pub2.
47.
Gehring, W. J. & Ikeo, K. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics 15, 371–377 (1999).
48.
Knight, H. & Knight, M. R. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science 6, 262–267 (2001).
49.
Zhu, J.-K. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology 53, 247–273 (2002).
50.
Singh, K. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology 5, 430–436 (2002).
51.
Devoto, A. & Turner, J. G. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum 123, 161–172 (2005).
52.
Matys, V. & Fricke, E. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research 31, 374–378 (2003).
53.
Latchman, D. S. Transcription Factors. (2007) doi:10.1002/9780470015902.a0005278.pub2.
54.
Mitchell, P. J. & Tjian, R. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins. Science 245, 371–378 (1989).
55.
Semenza, G. L. Transcription Factors and Human Disorders. (2005) doi:10.1038/npg.els.0005504.
56.
Latchman, D. S. Transcriptional Gene Regulation in Eukaryotes. (2005) doi:10.1002/9780470015902.a0002322.pub2.
57.
Gehring, W. J. & Ikeo, K. Pax 6: Mastering Eye Morphogenesis and Eye Evolution. Trends in Genetics 15, 371–377 (1999).
58.
Knight, H. & Knight, M. R. Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science 6, 262–267 (2001).
59.
Zhu, J.-K. Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology 53, 247–273 (2002).
60.
Singh, K. Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology 5, 430–436 (2002).
61.
Devoto, A. & Turner, J. G. Jasmonate-Regulated Arabidopsis Stress Signalling Network. Physiologia Plantarum 123, 161–172 (2005).
62.
Matys, V. & Fricke, E. TRANSFAC: Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research 31, 374–378 (2003).
63.
Zerbino, D. R., Paten, B. & Haussler, D. Integrating Genomes. Science 336, 179–182 (2012).
64.
Kitano, H. Computational Systems Biology. Nature 420, 206–210 (2002).
65.
Ideker, T., Galitski, T. & Hood, L. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001).
66.
Tyson, J. J., Chen, K. & Novak, B. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology 2, 908–916 (2001).
67.
Bruggeman, F. J. & Westerhoff, H. V. The Nature of Systems Biology. Trends in Microbiology 15, 45–50 (2007).
68.
Aloy, P. & Russell, R. B. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters 579, 1854–1858 (2005).
69.
Harbison, C. T., Gordon, D. B. & Young, R. A. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature 431, 99–104 (2004).
70.
Jen, C.-H. & Manfield, I. W. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal 46, 336–348 (2006).
71.
Oltvai, Z. N. & Barabási, A.-L. Systems Biology. Life’s Complexity Pyramid. Science (New York, N.Y.) 298, 763–764 (2002).
72.
Nemhauser, J. L., Hong, F. & Chory, J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell 126, 467–475 (2006).
73.
Legrain, P. Protein-Protein Interaction Maps. Encyclopedia of life sciences (2006) doi:10.1002/9780470015902.a0006205.
74.
Krogan, N. J. & Cagney, G. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature 440, 637–643 (2006).
75.
Von Mering, C. & Jensen, L. J. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research 33, D433–D437 (2005).
76.
Pieroni, E. & de la Fuente van Bentem, S. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics 8, 799–816 (2008).
77.
Bork, P. & Jensen, L. J. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology 14, 292–299 (2004).
78.
Jensen, L. J. & Kuhn, M. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research 37, D412–D416 (2009).
79.
Jen, C.-H. & Manfield, I. W. The Arabidopsis Co-Expression Tool (Act): A WWW-Based Tool and Database for Microarray-Based Gene Expression Analysis. The Plant Journal 46, 336–348 (2006).
80.
Oltvai, Z. N. Systems Biology: Life’s Complexity Pyramid. Science 298, 763–764 (2002).
81.
Nemhauser, J. L., Hong, F. & Chory, J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell 126, 467–475 (2006).
82.
Legrain, P. Protein-Protein Interaction Maps. eLS (2006).
83.
Krogan, N. J. & Cagney, G. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae. Nature 440, 637–643 (2006).
84.
Von Mering, C. & Jensen, L. J. STRING: Known and Predicted Protein-Protein Associations, Integrated and Transferred Across Organisms. Nucleic Acids Research 33, D433–D437 (2005).
85.
Pieroni, E. & de la Fuente van Bentem, S. Protein Networking: Insights Into Global Functional Organization of Proteomes. Proteomics 8, 799–816 (2008).
86.
Bork, P. & Jensen, L. J. Protein Interaction Networks From Yeast to Human. Current Opinion in Structural Biology 14, 292–299 (2004).
87.
Jensen, L. J. & Kuhn, M. STRING 8--a Global View on Proteins and Their Functional Interactions in 630 Organisms. Nucleic Acids Research 37, D412–D416 (2009).
88.
Massie, C. E. & Mills, I. G. ChIPping Away at Gene Regulation. EMBO Reports 9, 337–343 (2008).
89.
Harbison, C. T., Gordon, D. B. & Young, R. A. Transcriptional Regulatory Code of a Eukaryotic Genome. Nature 431, 99–104 (2004).
90.
Ren, B. & Dynlacht, B. D. Use of Chromatin Immunoprecipitation Assays in Genome-Wide Location Analysis of Mammalian Transcription Factors. Chromatin and Chromatin Remodeling Enzymes, Part B 376, 304–315 (2003).
91.
Ren, B. & Robert, F. Genome-Wide Location and Function of DNA Binding Proteins. Science 290, 2306–2309 (2000).
92.
Mardis, E. R. ChIP-Seq: Welcome to the New Frontier. Nature Methods 4, 613–614 (2007).
93.
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science (New York, N.Y.) 316, 1497–1502 (2007).
94.
Mardis, E. R. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics 9, 387–402 (2008).
95.
Metzker, M. L. Emerging Technologies in DNA Sequencing. Genome Research 15, 1767–1776 (2005).
96.
Amaral, A. J. & Megens, H.-J. Application of Massive Parallel Sequencing to Whole Genome SNP Discovery in the Porcine Genome. BMC Genomics 10, (2009).
97.
Mardis, E. R. The Impact of Next-Generation Sequencing Technology on Genetics. Trends in Genetics 24, 133–141 (2008).
98.
Ideker, T., Galitski, T. & Hood, L. A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001).
99.
Tyson, J. J., Chen, K. & Novak, B. Milestones Network Dynamics and Cell Physiology. Nature Reviews Molecular Cell Biology 2, 908–916 (2001).
100.
Bruggeman, F. J. & Westerhoff, H. V. The Nature of Systems Biology. Trends in Microbiology 15, 45–50 (2007).
101.
Aloy, P. & Russell, R. B. Structure-Based Systems Biology: A Zoom Lens for the Cell. FEBS Letters 579, 1854–1858 (2005).
102.
Cravatt, B. F., Simon, G. M. & Yates III, J. R. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature 450, 991–1000 (2007).
103.
Choudhary, C. & Mann, M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology 11, 427–439 (2010).
104.
Domon, B. & Aebersold, R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology 28, 710–721 (2010).
105.
Foster, L. J. & de Hoog, C. L. A Mammalian Organelle Map by Protein Correlation Profiling. Cell 125, 187–199 (2006).
106.
Olsen, J. V., Blagoev, B. & al, E. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 127, 635–648 (2006).
107.
Oppermann, F. S., Gnad, F. & al, E. Large-Scale Proteomics Analysis of the Human Kinome. Molecular & Cellular Proteomics 8, 1751–1764 (2009).
108.
Pan, C., Olsen, J. V., Daub, H. & Mann, M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics 8, 2796–2808 (2009).
109.
Olsen, J. V., Vermeulen, M. & al, E. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling 3, (2010).
110.
Matsuoka, S. & Ballif, B. A. ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science (New York, N.Y.) 316, 1160–1166 (2007).
111.
Danial, N. N., Gramm, C. F. & al, E. BAD and Glucokinase Reside in a Mitochondrial Complex That Integrates Glycolysis and Apoptosis. Nature 424, 952–956 (2003).
112.
Gstaiger, M. & Aebersold, R. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics 10, 617–627 (2009).
113.
Aebersold, R. Quantitative Proteomics. (2008).
114.
Aebersold, R. & Mann, M. Mass Spectrometry-Based Proteomics. Nature 422, 198–207 (2003).
115.
Domon, B. & Aebersold, R. Mass Spectrometry and Protein Analysis. Science 312, 212–217 (2006).
116.
Canas, B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics 4, 295–320 (2006).
117.
Gary Siuzdak. The Expanding Role of Mass Spectrometry in Biotechnology. (Mcc Pr, 2003).
118.
Proteomics Analysis Step by Step Tutorial Educative File.
119.
Balog, J. & Sasi-Szabo, L. Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Science Translational Medicine 5, 194ra93-194ra93 (2013).
120.
Boersema, P. J., Kahraman, A. & Picotti, P. Proteomics Beyond Large-Scale Protein Expression Analysis. Current Opinion in Biotechnology 34, 162–170 (2015).
121.
Aebersold, R. & Mann, M. Mass Spectrometry-Based Proteomics. Nature 422, 198–207 (2003).
122.
Canas, B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics 4, 295–320 (2006).
123.
Cox, J. & Mann, M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry 80, 273–299 (2011).
124.
Geiger, T. & Wehner, A. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics 11, (2012).
125.
Domon, B. & Aebersold, R. Mass Spectrometry and Protein Analysis. Science 312, 212–217 (2006).
126.
Ahn, N. G., Shabb, J. B., Old, W. M. & Resing, K. A. Achieving In-Depth Proteomics Profiling by Mass Spectrometry. ACS Chemical Biology 2, 39–52 (2007).
127.
Chen, X. & Sun, L. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics 4, 25–37 (2007).
128.
Cravatt, B. F., Simon, G. M. & Yates III, J. R. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature 450, 991–1000 (2007).
129.
Han, X., Aslanian, A. & Yates, J. R. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology 12, 483–490 (2008).
130.
Ansong, C. & Purvine, S. O. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics 7, 50–62 (2008).
131.
Center for Metabolomics and Mass Spectrometry | Scripps Research. https://www.scripps.edu/science-and-medicine/cores-and-services/mass-spec-and-metabolomics/index.html.
132.
Mass Spectrometry Facility. http://www.chm.bris.ac.uk/ms/mshome.xhtml.
133.
Ashcroft, D. A. E. An Introduction to Mass Spectrometry. http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm.
134.
Peptide Mass Fingerprinting an IonSource Tutorial. http://www.ionsource.com/tutorial/.
135.
Mass Spectrometry Proteomics - Wikipedia, the Free Encyclopedia. https://en.wikipedia.org/wiki/Mass_spectrometry_proteomics.
136.
About Mass Spec. https://www.asms.org/about-mass-spectrometry.
137.
Mass Spectrometry - FTICR. (2006).
138.
Aebersold, R. & Mann, M. Mass Spectrometry-Based Proteomics. Nature 422, 198–207 (2003).
139.
Domon, B. & Aebersold, R. Mass Spectrometry and Protein Analysis. Science 312, 212–217 (2006).
140.
Canas, B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics 4, 295–320 (2006).
141.
Cravatt, B. F., Simon, G. M. & Yates III, J. R. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature 450, 991–1000 (2007).
142.
Bantscheff, M., Schirle, M. & al, E. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Analytical and Bioanalytical Chemistry 389, 1017–1031 (2007).
143.
Coombs, K. M. & Berard, A. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology 84, 10888–10906 (2010).
144.
Domon, B. & Aebersold, R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology 28, 710–721 (2010).
145.
Geiger, T. & Cox, J. Super-SILAC Mix for Quantitative Proteomics of Human Tumor Tissue. Nature Methods 7, 383–385 (2010).
146.
Bindschedler, L. V. & Cramer, R. Quantitative Plant Proteomics. Proteomics 11, 756–775 (2011).
147.
Nikolov, M., Schmidt, C. & Urlaub, H. Quantitative Mass Spectrometry-Based Proteomics: An Overview. in Quantitative Methods in Proteomics vol. Methods in molecular biology 85–100 (Humana Press, 2012).
148.
Lesur, A. & Domon, B. Advances in High-Resolution Accurate Mass Spectrometry Application to Targeted Proteomics. Proteomics 15, 880–890 (2015).
149.
Larance, M. & Lamond, A. I. Multidimensional Proteomics for Cell Biology. Nature Reviews Molecular Cell Biology 16, 269–280 (2015).
150.
Canas, B. Mass Spectrometry Technologies for Proteomics. Briefings in Functional Genomics and Proteomics 4, 295–320 (2006).
151.
Cox, J. & Mann, M. Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annual Review of Biochemistry 80, 273–299 (2011).
152.
Bindschedler, L. V. & Cramer, R. Quantitative Plant Proteomics. Proteomics 11, 756–775 (2011).
153.
Nikolov, M., Schmidt, C. & Urlaub, H. Quantitative Mass Spectrometry-Based Proteomics: An Overview. in Quantitative Methods in Proteomics vol. Methods in molecular biology 85–100 (Humana Press, 2012).
154.
Geiger, T. & Wehner, A. Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins. Molecular & Cellular Proteomics 11, (2012).
155.
Chen, X. & Sun, L. Amino Acid-Coded Tagging Approaches in Quantitative Proteomics. Expert Review of Proteomics 4, 25–37 (2007).
156.
Han, X., Aslanian, A. & Yates, J. R. Mass Spectrometry for Proteomics. Current Opinion in Chemical Biology 12, 483–490 (2008).
157.
Ansong, C. & Purvine, S. O. Proteogenomics: Needs and Roles to Be Filled by Proteomics in Genome Annotation. Briefings in Functional Genomics and Proteomics 7, 50–62 (2008).
158.
Schreiber, T. B. & Mausbacher, N. An Integrated Phosphoproteomics Work Flow Reveals Extensive Network Regulation in Early Lysophosphatidic Acid Signaling. Molecular & Cellular Proteomics 9, 1047–1062 (2010).
159.
Macek, B., Mann, M. & Olsen, J. V. Global and Site-Specific Quantitative Phosphoproteomics: Principles and Applications. Annual Review of Pharmacology and Toxicology 49, 199–221 (2009).
160.
Engholm-Keller, K. & Birck, P. TiSH — a Robust and Sensitive Global Phosphoproteomics Strategy Employing a Combination of TiO2, SIMAC, and HILIC. Journal of Proteomics 75, 5749–5761 (2012).
161.
Engholm-Keller, K. & Larsen, M. R. Technologies and Challenges in Large-Scale Phosphoproteomics. Proteomics 13, 910–931 (2013).
162.
Palumbo, A. M. & Smith, S. A. Tandem Mass Spectrometry Strategies for Phosphoproteome Analysis. Mass Spectrometry Reviews 30, 600–625 (2011).
163.
Nilsson, C. L. Advances in Quantitative Phosphoproteomics. Analytical Chemistry 84, 735–746 (2012).
164.
Coombs, K. M. & Berard, A. Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal Of Virology 84, 10888–10906 (2010).
165.
Suter, B., Kittanakom, S. & Stagljar, I. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology 19, 316–323 (2008).
166.
Rajagopala, S. V., Sikorski, P., Caufield, J. H., Tovchigrechko, A. & Uetz, P. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods 58, 392–399 (2012).
167.
Petschnigg, J., Snider, J. & Stagljar, I. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology 22, 50–58 (2011).
168.
Rual, J.-F. & Venkatesan, K. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature 437, 1173–1178 (2005).
169.
Steckelberg, A.-L., Boehm, V., Gromadzka, A. M. & Gehring, N. H. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports 2, 454–461 (2012).
170.
Puig, O. & Caspary, F. The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods 24, 218–229 (2001).
171.
Thingholm, T. E. & Jensen, O. N. SIMAC (Sequential Elution From IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated From Multiply Phosphorylated Peptides. Molecular & Cellular Proteomics: Mcp 7, 661–671 (2008).
172.
Benschop, J. J. & Mohammed, S. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular & Cellular Proteomics : Mcp 6, 1198–1214 (2007).
173.
Ummanni, R., Mundt, F. & Balabanov, S. Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform. PLoS ONE 6, (2011).
174.
Foster, L. J., De Hoog, C. L. & Mann, M. Unbiased Quantitative Proteomics of Lipid Rafts Reveals High Specificity for Signaling Factors. Proceedings Of The National Academy Of Sciences Of The United States Of America 100, 5813–5818 (2003).
175.
Rajagopala, S. V., Sikorski, P., Caufield, J. H., Tovchigrechko, A. & Uetz, P. Studying Protein Complexes by the Yeast Two-Hybrid System. Methods 58, 392–399 (2012).
176.
Petschnigg, J., Snider, J. & Stagljar, I. Interactive Proteomics Research Technologies: Recent Applications and Advances. Current Opinion in Biotechnology 22, 50–58 (2011).
177.
Steckelberg, A.-L., Boehm, V., Gromadzka, A. M. & Gehring, N. H. CWC22 Connects Pre-mRNA Splicing and Exon Junction Complex Assembly. Cell Reports 2, 454–461 (2012).
178.
Suter, B., Kittanakom, S. & Stagljar, I. Two-Hybrid Technologies in Proteomics Research. Current Opinion in Biotechnology 19, 316–323 (2008).
179.
Rual, J.-F. & Venkatesan, K. Towards a Proteome-Scale Map of the Human Protein–protein Interaction Network. Nature 437, 1173–1178 (2005).
180.
Zhang, W.-J., Pedersen, C. & al, E. Interaction of Barley Powdery Mildew Effector Candidate CSEP0055 With the Defence Protein PR17c. Molecular Plant Pathology 13, 1110–1119 (2012).
181.
Ahrens, C. H., Brunner, E. & al, E. Generating and Navigating Proteome Maps Using Mass Spectrometry. Nature Reviews Molecular Cell Biology 11, 789–801 (2010).
182.
Cox, J. & Mann, M. Is Proteomics the New Genomics? Cell 130, 395–398 (2007).
183.
Cravatt, B. F., Simon, G. M. & Yates III, J. R. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature 450, 991–1000 (2007).
184.
Choudhary, C. & Mann, M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nature Reviews Molecular Cell Biology 11, 427–439 (2010).
185.
Domon, B. & Aebersold, R. Options and Considerations When Selecting a Quantitative Proteomics Strategy. Nature Biotechnology 28, 710–721 (2010).
186.
Foster, L. J. & de Hoog, C. L. A Mammalian Organelle Map by Protein Correlation Profiling. Cell 125, 187–199 (2006).
187.
Olsen, J. V., Vermeulen, M. & al, E. Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signalling 3, (2010).
188.
Keck, J. M. & Jones, M. H. A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science 332, 1557–1561 (2011).
189.
Santamaria, A. & Wang, B. The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular & Cellular Proteomics 10, M110.004457-M110.004457 (2011).
190.
Pan, C., Olsen, J. V., Daub, H. & Mann, M. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics. Molecular & Cellular Proteomics 8, 2796–2808 (2009).
191.
Bisson, N. & James, D. A. Selected Reaction Monitoring Mass Spectrometry Reveals the Dynamics of Signaling Through the GRB2 Adaptor. Nature Biotechnology 29, 653–658 (2011).
192.
Liu, Y. & Aebersold, R. The Interdependence of Transcript and Protein Abundance: New Data-New Complexities. Molecular Systems Biology 12, 856–856 (2016).
193.
Leitner, A., Faini, M., Stengel, F. & Aebersold, R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends in Biochemical Sciences 41, 20–32 (2016).
194.
Ebhardt, H. A., Root, A., Sander, C. & Aebersold, R. Applications of Targeted Proteomics in Systems Biology and Translational Medicine. Proteomics 15, 3193–3208 (2015).
195.
Aebersold, R. & Mann, M. Mass Spectrometry-Based Proteomics. Nature 422, 198–207 (2003).
196.
Cox, J. & Mann, M. Is Proteomics the New Genomics? Cell 130, 395–398 (2007).
197.
Cravatt, B. F., Simon, G. M. & Yates III, J. R. The Biological Impact of Mass-Spectrometry-Based Proteomics. Nature 450, 991–1000 (2007).
198.
Gstaiger, M. & Aebersold, R. Applying Mass Spectrometry-Based Proteomics to Genetics, Genomics and Network Biology. Nature Reviews Genetics 10, 617–627 (2009).
199.
Steen, H. & Mann, M. The ABC’s (And XYZ’s) of Peptide Sequencing. Nature Reviews Molecular Cell Biology 5, 699–711 (2004).
200.
Gary Siuzdak. The Expanding Role of Mass Spectrometry in Biotechnology. (Mcc Pr, 2003).
201.
What is Mass Spectrometry? https://masspec.scripps.edu/landing_page.php?pgcontent=whatIsMassSpec.