1.
Lodish, H.F.: Molecular Cell Biology. W.H. Freeman Macmillan Learning, New York (2016).
2.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
3.
Weinberg, R.A.: ‘The Biology and Genetics of Cells and Organisms’, ‘The Nature of Cancer’ and ‘Tumor Viruses’. In: The Biology of Cancer. pp. 1–103. Garland Science, New York (2007).
4.
Hanahan, D., Weinberg, R.A.: The Hallmarks of Cancer. Cell. 100, 57–70 (2000). https://doi.org/10.1016/S0092-8674(00)81683-9.
5.
Hanahan, D., Weinberg, R.A.: Hallmarks of Cancer: The Next Generation. Cell. 144, 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013.
6.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
7.
Hanahan, D., Weinberg, R.A.: Hallmarks of Cancer: The Next Generation. Cell. 144, 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013.
8.
Pico de Coaña, Y.: Checkpoint Blockade for Cancer Therapy: Revitalizing a Suppressed Immune System. Trends in Molecular Medicine. 21, 482–491 (2015). https://doi.org/10.1016/j.molmed.2015.05.005.
9.
Postow, M.A.: Nivolumab and Ipilimumab Versus Ipilimumab in Untreated Melanoma. New England Journal of Medicine. 372, 2006–2017 (2015). https://doi.org/10.1056/NEJMoa1414428.
10.
Maude, S.L.: Chimeric Antigen Receptor T-cell Therapy for ALL. Hematology. 2014, 559–564 (2014). https://doi.org/10.1182/asheducation-2014.1.559.
11.
Butterfield, L.H.: Cancer Vaccines. BMJ. 350, h988–h988 (2015). https://doi.org/10.1136/bmj.h988.
12.
Lodish, H.F.: Molecular Cell Biology. W.H. Freeman Macmillan Learning, New York (2016).
13.
Hynes, R.O.: Integrins:Bidirectional, Allosteric Signaling Machines. Cell. 110, 673–687 (2002). https://doi.org/10.1016/S0092-8674(02)00971-6.
14.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
15.
Lodish, H.F.: Molecular Cell Biology. W.H. Freeman Macmillan Learning, New York (2016).
16.
Mulloy, B., Rider, C.C.: Cytokines and Proteoglycans: an Introductory Overview. Biochemical Society Transactions. 34, 409–413 (2006). https://doi.org/10.1042/BST0340409.
17.
Elenius, K.: Function of the Syndecans - a Family of Cell Surface Proteoglycans. Journal of Cell Science. 107, 2975–2982 (1994).
18.
Olsen, B.R.: Life without Perlecan Has Its Problems. The Journal of Cell Biology. 147, (1999).
19.
Yamada, K.M.: Fibronectins: Structure, Functions and Receptors. Current Opinion in Cell Biology. 1, 956–963 (1989).
20.
Kleinman, H.K., Weeks, B.S.: Laminin: Structure, Functions and Receptors. Current Opinion in Cell Biology. 1, 964–967 (1989). https://doi.org/10.1016/0955-0674(89)90066-5.
21.
Sanderson, R.D.: Enzymatic Remodeling of Heparan Sulfate Proteoglycans Within the Tumor Microenvironment: Growth Regulation and the Prospect of New Cancer Therapies. Journal of Cellular Biochemistry. 96, 897–905 (2005). https://doi.org/10.1002/jcb.20602.
22.
Blundell, T.L.: Crystal Structure of Fibroblast Growth Factor Receptor Ectodomain Bound to Ligand and Heparin. Nature. 407, 1029–1034 (2000). https://doi.org/10.1038/35039551.
23.
Nybakken, K., Perrimon, N.: Heparan Sulfate Proteoglycan Modulation of Developmental Signaling in Drosophila. Biochimica et Biophysica Acta (BBA) - General Subjects. 1573, 280–291 (2002). https://doi.org/10.1016/S0304-4165(02)00395-1.
24.
Keklikoglou, I., De Palma, M.: Cancer: Metastasis Risk After Anti-Macrophage Therapy. Nature. 515, 46–47 (2014). https://doi.org/10.1038/nature13931.
25.
Rider, C.C.: Heparin/heparan Sulphate Binding in the TGF-β cytokine Superfamily. Biochemical Society Transactions. 34, 458–460 (2006). https://doi.org/10.1042/BST0340458.
26.
Lodish, H.F.: Molecular Cell Biology. W.H. Freeman Macmillan Learning, New York (2016).
27.
NIH VideoCasting Past Events, https://videocast.nih.gov/pastevents.asp?c=29.
28.
Rezza, A.: Adult Stem Cell Niches. In: Stem Cells in Development and Disease, 107. pp. 333–372. https://doi.org/10.1016/B978-0-12-416022-4.00012-3.
29.
Morrison, S.J., Spradling, A.C.: Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell. 132, 598–611 (2008). https://doi.org/10.1016/j.cell.2008.01.038.
30.
Knoblich, J.A.: Mechanisms of Asymmetric Stem Cell Division. Cell. 132, 583–597 (2008). https://doi.org/10.1016/j.cell.2008.02.007.
31.
Jiang, W.: The Implications of Cancer Stem Cells for Cancer Therapy. International Journal of Molecular Sciences. 13, 16636–16657 (2012). https://doi.org/10.3390/ijms131216636.
32.
Yu, Z.: Cancer Stem Cells. The International Journal of Biochemistry & Cell Biology. 44, 2144–2151 (2012). https://doi.org/10.1016/j.biocel.2012.08.022.
33.
Bomken, S.: Understanding the Cancer Stem Cell. British Journal of Cancer. 103, (2010). https://doi.org/10.1038/sj.bjc.6605821.
34.
Meacham, C.E., Morrison, S.J.: Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 501, 328–337 (2013). https://doi.org/10.1038/nature12624.
35.
De Los Angeles, A.: Hallmarks of Pluripotency. Nature. 525, 469–478 (2015). https://doi.org/10.1038/nature15515.
36.
Chambers, I., Tomlinson, S.R.: The Transcriptional Foundation of Pluripotency. Development. 136, 2311–2322 (2009). https://doi.org/10.1242/dev.024398.
37.
Zhou, Q.: A Gene Regulatory Network in Mouse Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America. 104, 16438–16443 (2007).
38.
Wang, J.: A Protein Interaction Network for Pluripotency of Embryonic Stem Cells. Nature. 444, 364–368 (2006). https://doi.org/10.1038/nature05284.
39.
Nigg, E.A., Raff, J.W.: Centrioles, Centrosomes, and Cilia in Health and Disease. Cell. 139, 663–678 (2009). https://doi.org/10.1016/j.cell.2009.10.036.
40.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
41.
Lemmon, M.A., Schlessinger, J.: Cell Signaling by Receptor Tyrosine Kinases. Cell. 141, 1117–1134 (2010). https://doi.org/10.1016/j.cell.2010.06.011.
42.
Lim, W.A., Pawson, T.: Phosphotyrosine Signaling: Evolving a New Cellular Communication System. Cell. 142, 661–667 (2010). https://doi.org/10.1016/j.cell.2010.08.023.
43.
Hunter, T.: Receptor Tyrosine Kinases - Function, Families and Evolution | The Biomedical & Life Sciences Collection, https://hstalks.com/t/447/receptor-tyrosine-kinases-function-families-and-ev/?business, (2007).
44.
Kazlauskas, A.: How the PDGF Receptor Induces Cell Proliferation. The Biomedical & Life Sciences Collection. (2007).
45.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
46.
Lees, J.: The pRB/E2F pathway, https://hstalks.com/t/1254/the-prbe2f-pathway/?biosci, (2009).
47.
Kaiser, J.: Naked Mole Rat Wins the War on Cancer | Science | AAAS, http://www.sciencemag.org/news/2009/10/naked-mole-rat-wins-war-cancer.
48.
Hengartner, M.: Apoptosis in C. Elegans. The Biomedical & Life Sciences Collection. (2007).
49.
Dynlacht, B.: The E2F Family and Transcriptional Control of the Mammalian Cell Cycle. The Biomedical & Life Sciences Collection. (2007).
50.
Oren, M.: p53 and Apoptosis. The Biomedical & Life Sciences Collection. (2007).
51.
Chen, H.-Z.: Emerging Roles of E2Fs in Cancer: an Exit From Cell Cycle Control. Nature Reviews Cancer. 9, 785–797 (2009). https://doi.org/10.1038/nrc2696.
52.
van den Heuvel, S., Dyson, N.J.: Conserved Functions of the pRB and E2F Families. Nature Reviews Molecular Cell Biology. 9, 713–724 (2008). https://doi.org/10.1038/nrm2469.
53.
Couzin-Frankel, J.: The Bad Luck of Cancer. Science. 347, 12–12 (2015). https://doi.org/10.1126/science.347.6217.12.
54.
Tomasetti, C., Vogelstein, B.: Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science. 347, 78–81 (2015). https://doi.org/10.1126/science.1260825.
55.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
56.
Weinberg, R.A.: The Biology of Cancer. Garland Science, New York (2014).
57.
Weinberg, R.: Invasion, Metastasis and Stem Cells, https://hstalks.com/t/1376/invasion-metastasis-and-stem-cells/?biosci, (2009).
58.
Hanahan, D., Weinberg, R.A.: Hallmarks of Cancer: The Next Generation. Cell. 144, 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013.
59.
Hanahan, D., Weinberg, R.A.: The Hallmarks of Cancer. Cell. 100, 57–70 (2000). https://doi.org/10.1016/S0092-8674(00)81683-9.
60.
Gupta, G.P., Massagué, J.: Cancer Metastasis: Building a Framework. Cell. 127, 679–695 (2006). https://doi.org/10.1016/j.cell.2006.11.001.
61.
Nguyen, D.X.: Metastasis: from Dissemination to Organ-Specific Colonization. Nature Reviews Cancer. 9, 274–284 (2009). https://doi.org/10.1038/nrc2622.
62.
Pleasance, E.D.: A Small-Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure. Nature. 463, 184–190 (2010). https://doi.org/10.1038/nature08629.
63.
Gupta, G.P., Massagué, J.: Cancer Metastasis: Building a Framework. Cell. 127, 679–695 (2006). https://doi.org/10.1016/j.cell.2006.11.001.
64.
Hinchcliffe, E.H.: Requirement of Cdk2-Cyclin E Activity for Repeated Centrosome Reproduction in Xenopus Egg Extracts. Science. 283, 851–854 (1999).
65.
Nigg, E.A.: Centrosome Duplication in Mammalian Somatic Cells Requires E2F and Cdk2-cyclin A. Nature Cell Biology. 1, 88–93 (1999). https://doi.org/10.1038/10054.
66.
Pazour, G.J.: Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella. The Journal of Cell Biology. 151, (2000).
67.
Lingle, W.L.: Centrosome Amplification Drives Chromosomal Instability in Breast Tumor Development. Proceedings of the National Academy of Sciences of the United States of America. 99, 1978–1983 (2002).
68.
Meraldi, P.: Aurora-A Overexpression Reveals Tetraploidization as a Major Route to Centrosome Amplification in p53-/- Cells. The EMBO Journal. 21, 483–492 (2002). https://doi.org/10.1093/emboj/21.4.483.
69.
Nigg, E.A.: Centrosome Aberrations: Cause or Consequence of Cancer Progression? Nature Reviews Cancer. 2, 815–825 (2002). https://doi.org/10.1038/nrc924.
70.
Pazour, G.J., Rosenbaum, J.L.: Intraflagellar Transport and Cilia-Dependent Diseases. Trends in Cell Biology. 12, 551–555 (2002). https://doi.org/10.1016/S0962-8924(02)02410-8.
71.
Pazour, G.J.: Polycystin-2 Localizes to Kidney Cilia and the Ciliary Level is Elevated in Orpk Mice With Polycystic Kidney Disease. Current Biology. 12, R378–R380 (2002). https://doi.org/10.1016/S0960-9822(02)00877-1.
72.
Ansley, S.J.: Basal Body Dysfunction is a Likely Cause of Pleiotropic Bardet–Biedl Syndrome. Nature. 425, 628–633 (2003). https://doi.org/10.1038/nature02030.
73.
Pihan, G.A., Wallace, J., Zhou, Y., Doxsey, S.J.: Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-invasive Carcinomas. Cancer Research. 63, (2003).
74.
Meraldi, P.: Aurora Kinases Link Chromosome Segregation and Cell Division to Cancer Susceptibility. Current Opinion in Genetics & Development. 14, 29–36 (2004). https://doi.org/10.1016/j.gde.2003.11.006.
75.
Pazour, G.J.: Intraflagellar Transport and Cilia-Dependent Renal Disease: The Ciliary Hypothesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology. 15, 2528–2536 (2004). https://doi.org/10.1097/01.ASN.0000141055.57643.E0.
76.
Habedanck, R.: The Polo Kinase Plk4 Functions in Centriole Duplication. Nature Cell Biology. 7, 1140–1146 (2005). https://doi.org/10.1038/ncb1320.
77.
Badano, J.L.: The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annual Review of Genomics and Human Genetics. 7, 125–148 (2006). https://doi.org/10.1146/annurev.genom.7.080505.115610.
78.
Ganem, N.J.: A Mechanism Linking Extra Centrosomes to Chromosomal Instability. Nature. 460, 278–282 (2009). https://doi.org/10.1038/nature08136.
79.
Nigg, E.A., Raff, J.W.: Centrioles, Centrosomes, and Cilia in Health and Disease. Cell. 139, 663–678 (2009). https://doi.org/10.1016/j.cell.2009.10.036.
80.
Lončarek, J.: Centriole Reduplication During Prolonged Interphase Requires Procentriole Maturation Governed by Plk1. Current Biology. 20, 1277–1282 (2010). https://doi.org/10.1016/j.cub.2010.05.050.
81.
Krzywicka-Racka, A.: Repeated Cleavage Failure Does Not Establish Centrosome Amplification in Untransformed Human Cells. The Journal of Cell Biology. 194, (2011). https://doi.org/10.1083/jcb.201101073.
82.
Nigg, E.A., Stearns, T.: The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries. Nature Cell Biology. 13, 1154–1160 (2011). https://doi.org/10.1038/ncb2345.
83.
Tomasetti, C., Vogelstein, B.: Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science. 347, 78–81 (2015). https://doi.org/10.1126/science.1260825.
84.
Nurse, P.: The Richard Dimbleby Lecture 2012: ‘The New Enlightenment’, https://royalsociety.org/~/media/Royal_Society_Content/people/fellows/2012-02-29-Dimbleby.pdf, (2012).
85.
Wodarz, D., Zauber, A.G.: Cancer: Risk Factors and Random Chances. Nature. 517, 563–564 (2015). https://doi.org/10.1038/517563a.
86.
Wu, S.: Substantial Contribution of Extrinsic Risk Factors to Cancer Development. Nature. 529, 43–47 (2015). https://doi.org/10.1038/nature16166.
87.
George, J.: Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature. 524, 47–53 (2015). https://doi.org/10.1038/nature14664.
88.
Gao, H.: The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites. Cell. 150, 764–779 (2012). https://doi.org/10.1016/j.cell.2012.06.035.
89.
Davis, H.: Aberrant Epithelial GREM1 Expression Initiates Colonic Tumorigenesis from Cells Outside the Stem Cell Niche. Nature Medicine. 21, 62–70 (2014). https://doi.org/10.1038/nm.3750.
90.
Brazil, D.P.: BMP Signalling: Agony and Antagony in the Family. Trends in Cell Biology. 25, 249–264 (2015). https://doi.org/10.1016/j.tcb.2014.12.004.
91.
Zhang, X.H.-F.: Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell. 154, 1060–1073 (2013). https://doi.org/10.1016/j.cell.2013.07.036.
92.
Guise, T.A.: Breast Cancer Bone Metastases: It’s All about the Neighborhood. Cell. 154, 957–959 (2013). https://doi.org/10.1016/j.cell.2013.08.020.
93.
Zhao, T.: Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell. 17, 353–359 (2015). https://doi.org/10.1016/j.stem.2015.07.021.
94.
Cao, J.: Cells Derived From iPSC Can Be Immunogenic — Yes or No? Protein & Cell. 5, 1–3 (2014). https://doi.org/10.1007/s13238-013-0003-2.
95.
Swift, J.: Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science. 341, 1240104–1240104 (2013). https://doi.org/10.1126/science.1240104.
96.
Bainer, R., Weaver, V.: Strength Under Tension. Science. 341, 965–966 (2013). https://doi.org/10.1126/science.1243643.
97.
Guilak, F.: Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell. 5, 17–26 (2009). https://doi.org/10.1016/j.stem.2009.06.016.
98.
Rompolas, P.: Spatial Organization Within a Niche as a Determinant of Stem-Cell Fate. Nature. 502, 513–518 (2013). https://doi.org/10.1038/nature12602.
99.
Greco, V., Guo, S.: Compartmentalized Organization: a Common and Required Feature of Stem Cell Niches? Development. 137, 1586–1594 (2010). https://doi.org/10.1242/dev.041103.