1.
Lodish HF. Molecular Cell Biology. Eighth edition. New York: W.H. Freeman Macmillan Learning; 2016.
2.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
3.
Weinberg RA. ‘The Biology and Genetics of Cells and Organisms’, ‘The Nature of Cancer’ and ‘Tumor Viruses’. The Biology of Cancer. New York: Garland Science; 2007. p. 1–103.
4.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57–70.
5.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–674.
6.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
7.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–674.
8.
Pico de Coaña Y. Checkpoint Blockade for Cancer Therapy: Revitalizing a Suppressed Immune System. Trends in Molecular Medicine. 2015;21(8):482–491.
9.
Postow MA. Nivolumab and Ipilimumab Versus Ipilimumab in Untreated Melanoma. New England Journal of Medicine. 2015;372(21):2006–2017.
10.
Maude SL. Chimeric Antigen Receptor T-cell Therapy for ALL. Hematology. 2014;2014(1):559–564.
11.
Butterfield LH. Cancer Vaccines. BMJ [Internet]. 2015;350:h988–h988. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707521/
12.
Lodish HF. Molecular Cell Biology. Eighth edition. New York: W.H. Freeman Macmillan Learning; 2016.
13.
Hynes RO. Integrins:Bidirectional, Allosteric Signaling Machines. Cell. 2002;110(6):673–687.
14.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
15.
Lodish HF. Molecular Cell Biology. Eighth edition. New York: W.H. Freeman Macmillan Learning; 2016.
16.
Mulloy B, Rider CC. Cytokines and Proteoglycans: an Introductory Overview. Biochemical Society Transactions. 2006;34(3):409–413.
17.
Elenius K. Function of the Syndecans - a Family of Cell Surface Proteoglycans. Journal of Cell Science [Internet]. The Company of Biologists Ltd; 1994;107(11):2975–2982. Available from: http://jcs.biologists.org/content/107/11/2975
18.
Olsen BR. Life without Perlecan Has Its Problems. The Journal of Cell Biology [Internet]. The Rockefeller University Press; 1999;147(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169336/
19.
Yamada KM. Fibronectins: Structure, Functions and Receptors. Current Opinion in Cell Biology. 1989;1(5):956–963.
20.
Kleinman HK, Weeks BS. Laminin: Structure, Functions and Receptors. Current Opinion in Cell Biology. 1989;1(5):964–967.
21.
Sanderson RD. Enzymatic Remodeling of Heparan Sulfate Proteoglycans Within the Tumor Microenvironment: Growth Regulation and the Prospect of New Cancer Therapies. Journal of Cellular Biochemistry. 2005;96(5):897–905.
22.
Blundell TL. Crystal Structure of Fibroblast Growth Factor Receptor Ectodomain Bound to Ligand and Heparin. Nature. 2000;407(6807):1029–1034.
23.
Nybakken K, Perrimon N. Heparan Sulfate Proteoglycan Modulation of Developmental Signaling in Drosophila. Biochimica et Biophysica Acta (BBA) - General Subjects. 2002;1573(3):280–291.
24.
Keklikoglou I, De Palma M. Cancer: Metastasis Risk After Anti-Macrophage Therapy. Nature. 2014;515(7525):46–47.
25.
Rider CC. Heparin/heparan Sulphate Binding in the TGF-β cytokine Superfamily. Biochemical Society Transactions. 2006;34(3):458–460.
26.
Lodish HF. Molecular Cell Biology. Eighth edition. New York: W.H. Freeman Macmillan Learning; 2016.
27.
NIH VideoCasting Past Events [Internet]. Available from: https://videocast.nih.gov/pastevents.asp?c=29
28.
Rezza A. Adult Stem Cell Niches. Stem Cells in Development and Disease, 107. p. 333–372.
29.
Morrison SJ, Spradling AC. Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell. 2008;132(4):598–611.
30.
Knoblich JA. Mechanisms of Asymmetric Stem Cell Division. Cell. 2008;132(4):583–597.
31.
Jiang W. The Implications of Cancer Stem Cells for Cancer Therapy. International Journal of Molecular Sciences. 2012;13(12):16636–16657.
32.
Yu Z. Cancer Stem Cells. The International Journal of Biochemistry & Cell Biology. 2012;44(12):2144–2151.
33.
Bomken S. Understanding the Cancer Stem Cell. British Journal of Cancer [Internet]. Nature Publishing Group; 2010;103(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939794/
34.
Meacham CE, Morrison SJ. Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 2013;501(7467):328–337.
35.
De Los Angeles A. Hallmarks of Pluripotency. Nature. 2015;525(7570):469–478.
36.
Chambers I, Tomlinson SR. The Transcriptional Foundation of Pluripotency. Development. 2009;136(14):2311–2322.
37.
Zhou Q. A Gene Regulatory Network in Mouse Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America [Internet]. National Academy of SciencesNational Academy of Sciences; 2007;104(42):16438–16443. Available from: https://www.jstor.org/stable/25450071
38.
Wang J. A Protein Interaction Network for Pluripotency of Embryonic Stem Cells. Nature. 2006;444(7117):364–368.
39.
Nigg EA, Raff JW. Centrioles, Centrosomes, and Cilia in Health and Disease. Cell. 2009;139(4):663–678.
40.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
41.
Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 2010;141(7):1117–1134.
42.
Lim WA, Pawson T. Phosphotyrosine Signaling: Evolving a New Cellular Communication System. Cell. 2010;142(5):661–667.
43.
Hunter T. Receptor Tyrosine Kinases - Function, Families and Evolution | The Biomedical & Life Sciences Collection [Internet]. 2007. Available from: https://hstalks.com/t/447/receptor-tyrosine-kinases-function-families-and-ev/?business
44.
Kazlauskas A. How the PDGF Receptor Induces Cell Proliferation. The Biomedical & Life Sciences Collection [Internet]. 2007; Available from: https://hstalks.com/t/450/how-the-pdgf-receptor-induces-cell-proliferation/?biosci
45.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
46.
Lees J. The pRB/E2F pathway [Internet]. The Biomedical & Life Sciences Collection. 2009. Available from: https://hstalks.com/t/1254/the-prbe2f-pathway/?biosci
47.
Kaiser J. Naked Mole Rat Wins the War on Cancer | Science | AAAS [Internet]. 2009. Available from: http://www.sciencemag.org/news/2009/10/naked-mole-rat-wins-war-cancer
48.
Hengartner M. Apoptosis in C. Elegans. The Biomedical & Life Sciences Collection [Internet]. 2007; Available from: https://hstalks.com/t/276/apoptosis-in-c-elegans/?biosci
49.
Dynlacht B. The E2F Family and Transcriptional Control of the Mammalian Cell Cycle. The Biomedical & Life Sciences Collection [Internet]. 2007; Available from: https://hstalks.com/t/672/the-e2f-family-and-transcriptional-control-of-the-/?biosci
50.
Oren M. p53 and Apoptosis. The Biomedical & Life Sciences Collection [Internet]. 2007; Available from: https://hstalks.com/t/291/p53-and-apoptosis/?biosci
51.
Chen HZ. Emerging Roles of E2Fs in Cancer: an Exit From Cell Cycle Control. Nature Reviews Cancer. 2009;9(11):785–797.
52.
van den Heuvel S, Dyson NJ. Conserved Functions of the pRB and E2F Families. Nature Reviews Molecular Cell Biology. 2008;9(9):713–724.
53.
Couzin-Frankel J. The Bad Luck of Cancer. Science. 2015;347(6217):12–12.
54.
Tomasetti C, Vogelstein B. Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science. 2015;347(6217):78–81.
55.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
56.
Weinberg RA. The Biology of Cancer. Second edition. New York: Garland Science; 2014.
57.
Weinberg R. Invasion, Metastasis and Stem Cells [Internet]. The Biomedical & Life Sciences Collection. 2009. Available from: https://hstalks.com/t/1376/invasion-metastasis-and-stem-cells/?biosci
58.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646–674.
59.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57–70.
60.
Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006;127(4):679–695.
61.
Nguyen DX. Metastasis: from Dissemination to Organ-Specific Colonization. Nature Reviews Cancer. 2009;9(4):274–284.
62.
Pleasance ED. A Small-Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure. Nature. 2010;463(7278):184–190.
63.
Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006;127(4):679–695.
64.
Hinchcliffe EH. Requirement of Cdk2-Cyclin E Activity for Repeated Centrosome Reproduction in Xenopus Egg Extracts. Science [Internet]. American Association for the Advancement of ScienceAmerican Association for the Advancement of Science; 1999;283(5403):851–854. Available from: http://www.jstor.org/stable/2897252?seq=1#page_scan_tab_contents
65.
Nigg EA. Centrosome Duplication in Mammalian Somatic Cells Requires E2F and Cdk2-cyclin A. Nature Cell Biology. 1999;1(2):88–93.
66.
Pazour GJ. Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella. The Journal of Cell Biology [Internet]. The Rockefeller University Press; 2000;151(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185580/
67.
Lingle WL. Centrosome Amplification Drives Chromosomal Instability in Breast Tumor Development. Proceedings of the National Academy of Sciences of the United States of America [Internet]. National Academy of SciencesNational Academy of Sciences; 2002;99(4):1978–1983. Available from: http://www.jstor.org/stable/3057904?seq=1#page_scan_tab_contents
68.
Meraldi P. Aurora-A Overexpression Reveals Tetraploidization as a Major Route to Centrosome Amplification in p53-/- Cells. The EMBO Journal. 2002;21(4):483–492.
69.
Nigg EA. Centrosome Aberrations: Cause or Consequence of Cancer Progression? Nature Reviews Cancer. 2002;2(11):815–825.
70.
Pazour GJ, Rosenbaum JL. Intraflagellar Transport and Cilia-Dependent Diseases. Trends in Cell Biology. 2002;12(12):551–555.
71.
Pazour GJ. Polycystin-2 Localizes to Kidney Cilia and the Ciliary Level is Elevated in Orpk Mice With Polycystic Kidney Disease. Current Biology. 2002;12(11):R378–R380.
72.
Ansley SJ. Basal Body Dysfunction is a Likely Cause of Pleiotropic Bardet–Biedl Syndrome. Nature. 2003;425(6958):628–633.
73.
Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-invasive Carcinomas. Cancer Research [Internet]. 2003;63. Available from: http://cancerres.aacrjournals.org/content/63/6/1398
74.
Meraldi P. Aurora Kinases Link Chromosome Segregation and Cell Division to Cancer Susceptibility. Current Opinion in Genetics & Development. 2004;14(1):29–36.
75.
Pazour GJ. Intraflagellar Transport and Cilia-Dependent Renal Disease: The Ciliary Hypothesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology. 2004;15(10):2528–2536.
76.
Habedanck R. The Polo Kinase Plk4 Functions in Centriole Duplication. Nature Cell Biology. 2005;7(11):1140–1146.
77.
Badano JL. The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annual Review of Genomics and Human Genetics. 2006;7(1):125–148.
78.
Ganem NJ. A Mechanism Linking Extra Centrosomes to Chromosomal Instability. Nature. 2009;460(7252):278–282.
79.
Nigg EA, Raff JW. Centrioles, Centrosomes, and Cilia in Health and Disease. Cell. 2009;139(4):663–678.
80.
Lončarek J. Centriole Reduplication During Prolonged Interphase Requires Procentriole Maturation Governed by Plk1. Current Biology. 2010;20(14):1277–1282.
81.
Krzywicka-Racka A. Repeated Cleavage Failure Does Not Establish Centrosome Amplification in Untransformed Human Cells. The Journal of Cell Biology [Internet]. The Rockefeller University Press; 2011;194(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144409/
82.
Nigg EA, Stearns T. The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries. Nature Cell Biology. 2011;13(10):1154–1160.
83.
Tomasetti C, Vogelstein B. Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science. 2015;347(6217):78–81.
84.
Nurse P. The Richard Dimbleby Lecture 2012: ‘The New Enlightenment’ [Internet]. 2012. Available from: https://royalsociety.org/~/media/Royal_Society_Content/people/fellows/2012-02-29-Dimbleby.pdf
85.
Wodarz D, Zauber AG. Cancer: Risk Factors and Random Chances. Nature. 2015;517(7536):563–564.
86.
Wu S. Substantial Contribution of Extrinsic Risk Factors to Cancer Development. Nature. 2015;529(7584):43–47.
87.
George J. Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature. 2015;524(7563):47–53.
88.
Gao H. The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites. Cell. 2012;150(4):764–779.
89.
Davis H. Aberrant Epithelial GREM1 Expression Initiates Colonic Tumorigenesis from Cells Outside the Stem Cell Niche. Nature Medicine. 2014;21(1):62–70.
90.
Brazil DP. BMP Signalling: Agony and Antagony in the Family. Trends in Cell Biology. 2015;25(5):249–264.
91.
Zhang XHF. Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell. 2013;154(5):1060–1073.
92.
Guise TA. Breast Cancer Bone Metastases: It’s All about the Neighborhood. Cell. 2013;154(5):957–959.
93.
Zhao T. Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell. 2015;17(3):353–359.
94.
Cao J. Cells Derived From iPSC Can Be Immunogenic — Yes or No? Protein & Cell. 2014;5(1):1–3.
95.
Swift J. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science. 2013;341(6149):1240104–1240104.
96.
Bainer R, Weaver V. Strength Under Tension. Science. 2013;341(6149):965–966.
97.
Guilak F. Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell. 2009;5(1):17–26.
98.
Rompolas P. Spatial Organization Within a Niche as a Determinant of Stem-Cell Fate. Nature. 2013;502(7472):513–518.
99.
Greco V, Guo S. Compartmentalized Organization: a Common and Required Feature of Stem Cell Niches? Development. 2010;137(10):1586–1594.