1.
Lodish, H. F. Molecular Cell Biology. (W.H. Freeman Macmillan Learning, 2016).
2.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
3.
Weinberg, R. A. ‘The Biology and Genetics of Cells and Organisms’, ‘The Nature of Cancer’ and ‘Tumor Viruses’. in The Biology of Cancer 1–103 (Garland Science, 2007).
4.
Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000).
5.
Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
6.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
7.
Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
8.
Pico de Coaña, Y. Checkpoint Blockade for Cancer Therapy: Revitalizing a Suppressed Immune System. Trends in Molecular Medicine 21, 482–491 (2015).
9.
Postow, M. A. Nivolumab and Ipilimumab Versus Ipilimumab in Untreated Melanoma. New England Journal of Medicine 372, 2006–2017 (2015).
10.
Maude, S. L. Chimeric Antigen Receptor T-cell Therapy for ALL. Hematology 2014, 559–564 (2014).
11.
Butterfield, L. H. Cancer Vaccines. BMJ 350, h988–h988 (2015).
12.
Lodish, H. F. Molecular Cell Biology. (W.H. Freeman Macmillan Learning, 2016).
13.
Hynes, R. O. Integrins:Bidirectional, Allosteric Signaling Machines. Cell 110, 673–687 (2002).
14.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
15.
Lodish, H. F. Molecular Cell Biology. (W.H. Freeman Macmillan Learning, 2016).
16.
Mulloy, B. & Rider, C. C. Cytokines and Proteoglycans: an Introductory Overview. Biochemical Society Transactions 34, 409–413 (2006).
17.
Elenius, K. Function of the Syndecans - a Family of Cell Surface Proteoglycans. Journal of Cell Science 107, 2975–2982 (1994).
18.
Olsen, B. R. Life without Perlecan Has Its Problems. The Journal of Cell Biology 147, (1999).
19.
Yamada, K. M. Fibronectins: Structure, Functions and Receptors. Current Opinion in Cell Biology 1, 956–963 (1989).
20.
Kleinman, H. K. & Weeks, B. S. Laminin: Structure, Functions and Receptors. Current Opinion in Cell Biology 1, 964–967 (1989).
21.
Sanderson, R. D. Enzymatic Remodeling of Heparan Sulfate Proteoglycans Within the Tumor Microenvironment: Growth Regulation and the Prospect of New Cancer Therapies. Journal of Cellular Biochemistry 96, 897–905 (2005).
22.
Blundell, T. L. Crystal Structure of Fibroblast Growth Factor Receptor Ectodomain Bound to Ligand and Heparin. Nature 407, 1029–1034 (2000).
23.
Nybakken, K. & Perrimon, N. Heparan Sulfate Proteoglycan Modulation of Developmental Signaling in Drosophila. Biochimica et Biophysica Acta (BBA) - General Subjects 1573, 280–291 (2002).
24.
Keklikoglou, I. & De Palma, M. Cancer: Metastasis Risk After Anti-Macrophage Therapy. Nature 515, 46–47 (2014).
25.
Rider, C. C. Heparin/heparan Sulphate Binding in the TGF-β cytokine Superfamily. Biochemical Society Transactions 34, 458–460 (2006).
26.
Lodish, H. F. Molecular Cell Biology. (W.H. Freeman Macmillan Learning, 2016).
27.
NIH VideoCasting Past Events. https://videocast.nih.gov/pastevents.asp?c=29.
28.
Rezza, A. Adult Stem Cell Niches. in Stem Cells in Development and Disease, 107 333–372 doi:10.1016/B978-0-12-416022-4.00012-3.
29.
Morrison, S. J. & Spradling, A. C. Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell 132, 598–611 (2008).
30.
Knoblich, J. A. Mechanisms of Asymmetric Stem Cell Division. Cell 132, 583–597 (2008).
31.
Jiang, W. The Implications of Cancer Stem Cells for Cancer Therapy. International Journal of Molecular Sciences 13, 16636–16657 (2012).
32.
Yu, Z. Cancer Stem Cells. The International Journal of Biochemistry & Cell Biology 44, 2144–2151 (2012).
33.
Bomken, S. Understanding the Cancer Stem Cell. British Journal of Cancer 103, (2010).
34.
Meacham, C. E. & Morrison, S. J. Tumour Heterogeneity and Cancer Cell Plasticity. Nature 501, 328–337 (2013).
35.
De Los Angeles, A. Hallmarks of Pluripotency. Nature 525, 469–478 (2015).
36.
Chambers, I. & Tomlinson, S. R. The Transcriptional Foundation of Pluripotency. Development 136, 2311–2322 (2009).
37.
Zhou, Q. A Gene Regulatory Network in Mouse Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America 104, 16438–16443 (2007).
38.
Wang, J. A Protein Interaction Network for Pluripotency of Embryonic Stem Cells. Nature 444, 364–368 (2006).
39.
Nigg, E. A. & Raff, J. W. Centrioles, Centrosomes, and Cilia in Health and Disease. Cell 139, 663–678 (2009).
40.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
41.
Lemmon, M. A. & Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 141, 1117–1134 (2010).
42.
Lim, W. A. & Pawson, T. Phosphotyrosine Signaling: Evolving a New Cellular Communication System. Cell 142, 661–667 (2010).
43.
Hunter, T. Receptor Tyrosine Kinases - Function, Families and Evolution | The Biomedical & Life Sciences Collection. (2007).
44.
Kazlauskas, A. How the PDGF Receptor Induces Cell Proliferation. The Biomedical & Life Sciences Collection (2007).
45.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
46.
Lees, J. The pRB/E2F pathway. The Biomedical & Life Sciences Collection (2009).
47.
Kaiser, J. Naked Mole Rat Wins the War on Cancer | Science | AAAS. http://www.sciencemag.org/news/2009/10/naked-mole-rat-wins-war-cancer (2009).
48.
Hengartner, M. Apoptosis in C. Elegans. The Biomedical & Life Sciences Collection (2007).
49.
Dynlacht, B. The E2F Family and Transcriptional Control of the Mammalian Cell Cycle. The Biomedical & Life Sciences Collection (2007).
50.
Oren, M. p53 and Apoptosis. The Biomedical & Life Sciences Collection (2007).
51.
Chen, H.-Z. Emerging Roles of E2Fs in Cancer: an Exit From Cell Cycle Control. Nature Reviews Cancer 9, 785–797 (2009).
52.
van den Heuvel, S. & Dyson, N. J. Conserved Functions of the pRB and E2F Families. Nature Reviews Molecular Cell Biology 9, 713–724 (2008).
53.
Couzin-Frankel, J. The Bad Luck of Cancer. Science 347, 12–12 (2015).
54.
Tomasetti, C. & Vogelstein, B. Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science 347, 78–81 (2015).
55.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
56.
Weinberg, R. A. The Biology of Cancer. (Garland Science, 2014).
57.
Weinberg, R. Invasion, Metastasis and Stem Cells. The Biomedical & Life Sciences Collection (2009).
58.
Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
59.
Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000).
60.
Gupta, G. P. & Massagué, J. Cancer Metastasis: Building a Framework. Cell 127, 679–695 (2006).
61.
Nguyen, D. X. Metastasis: from Dissemination to Organ-Specific Colonization. Nature Reviews Cancer 9, 274–284 (2009).
62.
Pleasance, E. D. A Small-Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure. Nature 463, 184–190 (2010).
63.
Gupta, G. P. & Massagué, J. Cancer Metastasis: Building a Framework. Cell 127, 679–695 (2006).
64.
Hinchcliffe, E. H. Requirement of Cdk2-Cyclin E Activity for Repeated Centrosome Reproduction in Xenopus Egg Extracts. Science 283, 851–854 (1999).
65.
Nigg, E. A. Centrosome Duplication in Mammalian Somatic Cells Requires E2F and Cdk2-cyclin A. Nature Cell Biology 1, 88–93 (1999).
66.
Pazour, G. J. Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella. The Journal of Cell Biology 151, (2000).
67.
Lingle, W. L. Centrosome Amplification Drives Chromosomal Instability in Breast Tumor Development. Proceedings of the National Academy of Sciences of the United States of America 99, 1978–1983 (2002).
68.
Meraldi, P. Aurora-A Overexpression Reveals Tetraploidization as a Major Route to Centrosome Amplification in p53-/- Cells. The EMBO Journal 21, 483–492 (2002).
69.
Nigg, E. A. Centrosome Aberrations: Cause or Consequence of Cancer Progression? Nature Reviews Cancer 2, 815–825 (2002).
70.
Pazour, G. J. & Rosenbaum, J. L. Intraflagellar Transport and Cilia-Dependent Diseases. Trends in Cell Biology 12, 551–555 (2002).
71.
Pazour, G. J. Polycystin-2 Localizes to Kidney Cilia and the Ciliary Level is Elevated in Orpk Mice With Polycystic Kidney Disease. Current Biology 12, R378–R380 (2002).
72.
Ansley, S. J. Basal Body Dysfunction is a Likely Cause of Pleiotropic Bardet–Biedl Syndrome. Nature 425, 628–633 (2003).
73.
Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-invasive Carcinomas. Cancer Research 63, (2003).
74.
Meraldi, P. Aurora Kinases Link Chromosome Segregation and Cell Division to Cancer Susceptibility. Current Opinion in Genetics & Development 14, 29–36 (2004).
75.
Pazour, G. J. Intraflagellar Transport and Cilia-Dependent Renal Disease: The Ciliary Hypothesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology 15, 2528–2536 (2004).
76.
Habedanck, R. The Polo Kinase Plk4 Functions in Centriole Duplication. Nature Cell Biology 7, 1140–1146 (2005).
77.
Badano, J. L. The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annual Review of Genomics and Human Genetics 7, 125–148 (2006).
78.
Ganem, N. J. A Mechanism Linking Extra Centrosomes to Chromosomal Instability. Nature 460, 278–282 (2009).
79.
Nigg, E. A. & Raff, J. W. Centrioles, Centrosomes, and Cilia in Health and Disease. Cell 139, 663–678 (2009).
80.
Lončarek, J. Centriole Reduplication During Prolonged Interphase Requires Procentriole Maturation Governed by Plk1. Current Biology 20, 1277–1282 (2010).
81.
Krzywicka-Racka, A. Repeated Cleavage Failure Does Not Establish Centrosome Amplification in Untransformed Human Cells. The Journal of Cell Biology 194, (2011).
82.
Nigg, E. A. & Stearns, T. The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries. Nature Cell Biology 13, 1154–1160 (2011).
83.
Tomasetti, C. & Vogelstein, B. Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science 347, 78–81 (2015).
84.
Nurse, P. The Richard Dimbleby Lecture 2012: ‘The New Enlightenment’. (2012).
85.
Wodarz, D. & Zauber, A. G. Cancer: Risk Factors and Random Chances. Nature 517, 563–564 (2015).
86.
Wu, S. Substantial Contribution of Extrinsic Risk Factors to Cancer Development. Nature 529, 43–47 (2015).
87.
George, J. Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature 524, 47–53 (2015).
88.
Gao, H. The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites. Cell 150, 764–779 (2012).
89.
Davis, H. Aberrant Epithelial GREM1 Expression Initiates Colonic Tumorigenesis from Cells Outside the Stem Cell Niche. Nature Medicine 21, 62–70 (2014).
90.
Brazil, D. P. BMP Signalling: Agony and Antagony in the Family. Trends in Cell Biology 25, 249–264 (2015).
91.
Zhang, X. H.-F. Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell 154, 1060–1073 (2013).
92.
Guise, T. A. Breast Cancer Bone Metastases: It’s All about the Neighborhood. Cell 154, 957–959 (2013).
93.
Zhao, T. Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell 17, 353–359 (2015).
94.
Cao, J. Cells Derived From iPSC Can Be Immunogenic — Yes or No? Protein & Cell 5, 1–3 (2014).
95.
Swift, J. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science 341, 1240104–1240104 (2013).
96.
Bainer, R. & Weaver, V. Strength Under Tension. Science 341, 965–966 (2013).
97.
Guilak, F. Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell 5, 17–26 (2009).
98.
Rompolas, P. Spatial Organization Within a Niche as a Determinant of Stem-Cell Fate. Nature 502, 513–518 (2013).
99.
Greco, V. & Guo, S. Compartmentalized Organization: a Common and Required Feature of Stem Cell Niches? Development 137, 1586–1594 (2010).