[1]
H. F. Lodish, Molecular Cell Biology, Eighth edition. New York: W.H. Freeman Macmillan Learning, 2016.
[2]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[3]
R. A. Weinberg, ‘“The Biology and Genetics of Cells and Organisms”, “The Nature of Cancer” and “Tumor Viruses”’, in The Biology of Cancer, New York: Garland Science, 2007, pp. 1–103.
[4]
D. Hanahan and R. A. Weinberg, ‘The Hallmarks of Cancer’, Cell, vol. 100, no. 1, pp. 57–70, 2000, doi: 10.1016/S0092-8674(00)81683-9.
[5]
D. Hanahan and R. A. Weinberg, ‘Hallmarks of Cancer: The Next Generation’, Cell, vol. 144, no. 5, pp. 646–674, 2011, doi: 10.1016/j.cell.2011.02.013.
[6]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[7]
D. Hanahan and R. A. Weinberg, ‘Hallmarks of Cancer: The Next Generation’, Cell, vol. 144, no. 5, pp. 646–674, 2011, doi: 10.1016/j.cell.2011.02.013.
[8]
Y. Pico de Coaña, ‘Checkpoint Blockade for Cancer Therapy: Revitalizing a Suppressed Immune System’, Trends in Molecular Medicine, vol. 21, no. 8, pp. 482–491, 2015, doi: 10.1016/j.molmed.2015.05.005.
[9]
M. A. Postow, ‘Nivolumab and Ipilimumab Versus Ipilimumab in Untreated Melanoma’, New England Journal of Medicine, vol. 372, no. 21, pp. 2006–2017, 2015, doi: 10.1056/NEJMoa1414428.
[10]
S. L. Maude, ‘Chimeric Antigen Receptor T-cell Therapy for ALL’, Hematology, vol. 2014, no. 1, pp. 559–564, 2014, doi: 10.1182/asheducation-2014.1.559.
[11]
L. H. Butterfield, ‘Cancer Vaccines’, BMJ, vol. 350, pp. h988–h988, 2015, doi: 10.1136/bmj.h988. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707521/
[12]
H. F. Lodish, Molecular Cell Biology, Eighth edition. New York: W.H. Freeman Macmillan Learning, 2016.
[13]
R. O. Hynes, ‘Integrins:Bidirectional, Allosteric Signaling Machines’, Cell, vol. 110, no. 6, pp. 673–687, 2002, doi: 10.1016/S0092-8674(02)00971-6.
[14]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[15]
H. F. Lodish, Molecular Cell Biology, Eighth edition. New York: W.H. Freeman Macmillan Learning, 2016.
[16]
B. Mulloy and C. C. Rider, ‘Cytokines and Proteoglycans: an Introductory Overview’, Biochemical Society Transactions, vol. 34, no. 3, pp. 409–413, 2006, doi: 10.1042/BST0340409.
[17]
K. Elenius, ‘Function of the Syndecans - a Family of Cell Surface Proteoglycans’, Journal of Cell Science, vol. 107, no. 11, pp. 2975–2982, 1994 [Online]. Available: http://jcs.biologists.org/content/107/11/2975
[18]
B. R. Olsen, ‘Life without Perlecan Has Its Problems’, The Journal of Cell Biology, vol. 147, no. 5, 1999 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169336/
[19]
K. M. Yamada, ‘Fibronectins: Structure, Functions and Receptors’, Current Opinion in Cell Biology, vol. 1, no. 5, pp. 956–963, 1989.
[20]
H. K. Kleinman and B. S. Weeks, ‘Laminin: Structure, Functions and Receptors’, Current Opinion in Cell Biology, vol. 1, no. 5, pp. 964–967, 1989, doi: 10.1016/0955-0674(89)90066-5.
[21]
R. D. Sanderson, ‘Enzymatic Remodeling of Heparan Sulfate Proteoglycans Within the Tumor Microenvironment: Growth Regulation and the Prospect of New Cancer Therapies’, Journal of Cellular Biochemistry, vol. 96, no. 5, pp. 897–905, 2005, doi: 10.1002/jcb.20602.
[22]
T. L. Blundell, ‘Crystal Structure of Fibroblast Growth Factor Receptor Ectodomain Bound to Ligand and Heparin’, Nature, vol. 407, no. 6807, pp. 1029–1034, 2000, doi: 10.1038/35039551.
[23]
K. Nybakken and N. Perrimon, ‘Heparan Sulfate Proteoglycan Modulation of Developmental Signaling in Drosophila’, Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1573, no. 3, pp. 280–291, 2002, doi: 10.1016/S0304-4165(02)00395-1.
[24]
I. Keklikoglou and M. De Palma, ‘Cancer: Metastasis Risk After Anti-Macrophage Therapy’, Nature, vol. 515, no. 7525, pp. 46–47, 2014, doi: 10.1038/nature13931.
[25]
C. C. Rider, ‘Heparin/heparan Sulphate Binding in the TGF-β cytokine Superfamily’, Biochemical Society Transactions, vol. 34, no. 3, pp. 458–460, 2006, doi: 10.1042/BST0340458.
[26]
H. F. Lodish, Molecular Cell Biology, Eighth edition. New York: W.H. Freeman Macmillan Learning, 2016.
[27]
‘NIH VideoCasting Past Events’. [Online]. Available: https://videocast.nih.gov/pastevents.asp?c=29
[28]
A. Rezza, ‘Adult Stem Cell Niches’, in Stem Cells in Development and Disease, 107, pp. 333–372.
[29]
S. J. Morrison and A. C. Spradling, ‘Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life’, Cell, vol. 132, no. 4, pp. 598–611, 2008, doi: 10.1016/j.cell.2008.01.038.
[30]
J. A. Knoblich, ‘Mechanisms of Asymmetric Stem Cell Division’, Cell, vol. 132, no. 4, pp. 583–597, 2008, doi: 10.1016/j.cell.2008.02.007.
[31]
W. Jiang, ‘The Implications of Cancer Stem Cells for Cancer Therapy’, International Journal of Molecular Sciences, vol. 13, no. 12, pp. 16636–16657, 2012, doi: 10.3390/ijms131216636.
[32]
Z. Yu, ‘Cancer Stem Cells’, The International Journal of Biochemistry & Cell Biology, vol. 44, no. 12, pp. 2144–2151, 2012, doi: 10.1016/j.biocel.2012.08.022.
[33]
S. Bomken, ‘Understanding the Cancer Stem Cell’, British Journal of Cancer, vol. 103, no. 4, 2010, doi: 10.1038/sj.bjc.6605821. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939794/
[34]
C. E. Meacham and S. J. Morrison, ‘Tumour Heterogeneity and Cancer Cell Plasticity’, Nature, vol. 501, no. 7467, pp. 328–337, 2013, doi: 10.1038/nature12624.
[35]
A. De Los Angeles, ‘Hallmarks of Pluripotency’, Nature, vol. 525, no. 7570, pp. 469–478, 2015, doi: 10.1038/nature15515.
[36]
I. Chambers and S. R. Tomlinson, ‘The Transcriptional Foundation of Pluripotency’, Development, vol. 136, no. 14, pp. 2311–2322, 2009, doi: 10.1242/dev.024398.
[37]
Q. Zhou, ‘A Gene Regulatory Network in Mouse Embryonic Stem Cells’, Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 42, pp. 16438–16443, 2007 [Online]. Available: https://www.jstor.org/stable/25450071
[38]
J. Wang, ‘A Protein Interaction Network for Pluripotency of Embryonic Stem Cells’, Nature, vol. 444, no. 7117, pp. 364–368, 2006, doi: 10.1038/nature05284.
[39]
E. A. Nigg and J. W. Raff, ‘Centrioles, Centrosomes, and Cilia in Health and Disease’, Cell, vol. 139, no. 4, pp. 663–678, 2009, doi: 10.1016/j.cell.2009.10.036.
[40]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[41]
M. A. Lemmon and J. Schlessinger, ‘Cell Signaling by Receptor Tyrosine Kinases’, Cell, vol. 141, no. 7, pp. 1117–1134, 2010, doi: 10.1016/j.cell.2010.06.011.
[42]
W. A. Lim and T. Pawson, ‘Phosphotyrosine Signaling: Evolving a New Cellular Communication System’, Cell, vol. 142, no. 5, pp. 661–667, 2010, doi: 10.1016/j.cell.2010.08.023.
[43]
T. Hunter, ‘Receptor Tyrosine Kinases - Function, Families and Evolution | The Biomedical & Life Sciences Collection’. 2007 [Online]. Available: https://hstalks.com/t/447/receptor-tyrosine-kinases-function-families-and-ev/?business
[44]
A. Kazlauskas, ‘How the PDGF Receptor Induces Cell Proliferation’, The Biomedical & Life Sciences Collection, 2007 [Online]. Available: https://hstalks.com/t/450/how-the-pdgf-receptor-induces-cell-proliferation/?biosci
[45]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[46]
J. Lees, ‘The pRB/E2F pathway’, The Biomedical & Life Sciences Collection. 2009 [Online]. Available: https://hstalks.com/t/1254/the-prbe2f-pathway/?biosci
[47]
J. Kaiser, ‘Naked Mole Rat Wins the War on Cancer | Science | AAAS’, 2009. [Online]. Available: http://www.sciencemag.org/news/2009/10/naked-mole-rat-wins-war-cancer
[48]
M. Hengartner, ‘Apoptosis in C. Elegans’, The Biomedical & Life Sciences Collection, 2007 [Online]. Available: https://hstalks.com/t/276/apoptosis-in-c-elegans/?biosci
[49]
B. Dynlacht, ‘The E2F Family and Transcriptional Control of the Mammalian Cell Cycle’, The Biomedical & Life Sciences Collection, 2007 [Online]. Available: https://hstalks.com/t/672/the-e2f-family-and-transcriptional-control-of-the-/?biosci
[50]
M. Oren, ‘p53 and Apoptosis’, The Biomedical & Life Sciences Collection, 2007 [Online]. Available: https://hstalks.com/t/291/p53-and-apoptosis/?biosci
[51]
H.-Z. Chen, ‘Emerging Roles of E2Fs in Cancer: an Exit From Cell Cycle Control’, Nature Reviews Cancer, vol. 9, no. 11, pp. 785–797, 2009, doi: 10.1038/nrc2696.
[52]
S. van den Heuvel and N. J. Dyson, ‘Conserved Functions of the pRB and E2F Families’, Nature Reviews Molecular Cell Biology, vol. 9, no. 9, pp. 713–724, 2008, doi: 10.1038/nrm2469.
[53]
J. Couzin-Frankel, ‘The Bad Luck of Cancer’, Science, vol. 347, no. 6217, pp. 12–12, 2015, doi: 10.1126/science.347.6217.12.
[54]
C. Tomasetti and B. Vogelstein, ‘Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions’, Science, vol. 347, no. 6217, pp. 78–81, 2015, doi: 10.1126/science.1260825.
[55]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[56]
R. A. Weinberg, The Biology of Cancer, Second edition. New York: Garland Science, 2014.
[57]
R. Weinberg, ‘Invasion, Metastasis and Stem Cells’, The Biomedical & Life Sciences Collection. 2009 [Online]. Available: https://hstalks.com/t/1376/invasion-metastasis-and-stem-cells/?biosci
[58]
D. Hanahan and R. A. Weinberg, ‘Hallmarks of Cancer: The Next Generation’, Cell, vol. 144, no. 5, pp. 646–674, 2011, doi: 10.1016/j.cell.2011.02.013.
[59]
D. Hanahan and R. A. Weinberg, ‘The Hallmarks of Cancer’, Cell, vol. 100, no. 1, pp. 57–70, 2000, doi: 10.1016/S0092-8674(00)81683-9.
[60]
G. P. Gupta and J. Massagué, ‘Cancer Metastasis: Building a Framework’, Cell, vol. 127, no. 4, pp. 679–695, 2006, doi: 10.1016/j.cell.2006.11.001.
[61]
D. X. Nguyen, ‘Metastasis: from Dissemination to Organ-Specific Colonization’, Nature Reviews Cancer, vol. 9, no. 4, pp. 274–284, 2009, doi: 10.1038/nrc2622.
[62]
E. D. Pleasance, ‘A Small-Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure’, Nature, vol. 463, no. 7278, pp. 184–190, 2010, doi: 10.1038/nature08629.
[63]
G. P. Gupta and J. Massagué, ‘Cancer Metastasis: Building a Framework’, Cell, vol. 127, no. 4, pp. 679–695, 2006, doi: 10.1016/j.cell.2006.11.001.
[64]
E. H. Hinchcliffe, ‘Requirement of Cdk2-Cyclin E Activity for Repeated Centrosome Reproduction in Xenopus Egg Extracts’, Science, vol. 283, no. 5403, pp. 851–854, 1999 [Online]. Available: http://www.jstor.org/stable/2897252?seq=1#page_scan_tab_contents
[65]
E. A. Nigg, ‘Centrosome Duplication in Mammalian Somatic Cells Requires E2F and Cdk2-cyclin A’, Nature Cell Biology, vol. 1, no. 2, pp. 88–93, 1999, doi: 10.1038/10054.
[66]
G. J. Pazour, ‘Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella’, The Journal of Cell Biology, vol. 151, no. 3, 2000 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185580/
[67]
W. L. Lingle, ‘Centrosome Amplification Drives Chromosomal Instability in Breast Tumor Development’, Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 1978–1983, 2002 [Online]. Available: http://www.jstor.org/stable/3057904?seq=1#page_scan_tab_contents
[68]
P. Meraldi, ‘Aurora-A Overexpression Reveals Tetraploidization as a Major Route to Centrosome Amplification in p53-/- Cells’, The EMBO Journal, vol. 21, no. 4, pp. 483–492, 2002, doi: 10.1093/emboj/21.4.483.
[69]
E. A. Nigg, ‘Centrosome Aberrations: Cause or Consequence of Cancer Progression?’, Nature Reviews Cancer, vol. 2, no. 11, pp. 815–825, 2002, doi: 10.1038/nrc924.
[70]
G. J. Pazour and J. L. Rosenbaum, ‘Intraflagellar Transport and Cilia-Dependent Diseases’, Trends in Cell Biology, vol. 12, no. 12, pp. 551–555, 2002, doi: 10.1016/S0962-8924(02)02410-8.
[71]
G. J. Pazour, ‘Polycystin-2 Localizes to Kidney Cilia and the Ciliary Level is Elevated in Orpk Mice With Polycystic Kidney Disease’, Current Biology, vol. 12, no. 11, pp. R378–R380, 2002, doi: 10.1016/S0960-9822(02)00877-1.
[72]
S. J. Ansley, ‘Basal Body Dysfunction is a Likely Cause of Pleiotropic Bardet–Biedl Syndrome’, Nature, vol. 425, no. 6958, pp. 628–633, 2003, doi: 10.1038/nature02030.
[73]
G. A. Pihan, J. Wallace, Y. Zhou, and S. J. Doxsey, ‘Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-invasive Carcinomas’, Cancer Research, vol. 63, 2003 [Online]. Available: http://cancerres.aacrjournals.org/content/63/6/1398
[74]
P. Meraldi, ‘Aurora Kinases Link Chromosome Segregation and Cell Division to Cancer Susceptibility’, Current Opinion in Genetics & Development, vol. 14, no. 1, pp. 29–36, 2004, doi: 10.1016/j.gde.2003.11.006.
[75]
G. J. Pazour, ‘Intraflagellar Transport and Cilia-Dependent Renal Disease: The Ciliary Hypothesis of Polycystic Kidney Disease’, Journal of the American Society of Nephrology, vol. 15, no. 10, pp. 2528–2536, 2004, doi: 10.1097/01.ASN.0000141055.57643.E0.
[76]
R. Habedanck, ‘The Polo Kinase Plk4 Functions in Centriole Duplication’, Nature Cell Biology, vol. 7, no. 11, pp. 1140–1146, 2005, doi: 10.1038/ncb1320.
[77]
J. L. Badano, ‘The Ciliopathies: An Emerging Class of Human Genetic Disorders’, Annual Review of Genomics and Human Genetics, vol. 7, no. 1, pp. 125–148, 2006, doi: 10.1146/annurev.genom.7.080505.115610.
[78]
N. J. Ganem, ‘A Mechanism Linking Extra Centrosomes to Chromosomal Instability’, Nature, vol. 460, no. 7252, pp. 278–282, 2009, doi: 10.1038/nature08136.
[79]
E. A. Nigg and J. W. Raff, ‘Centrioles, Centrosomes, and Cilia in Health and Disease’, Cell, vol. 139, no. 4, pp. 663–678, 2009, doi: 10.1016/j.cell.2009.10.036.
[80]
J. Lončarek, ‘Centriole Reduplication During Prolonged Interphase Requires Procentriole Maturation Governed by Plk1’, Current Biology, vol. 20, no. 14, pp. 1277–1282, 2010, doi: 10.1016/j.cub.2010.05.050.
[81]
A. Krzywicka-Racka, ‘Repeated Cleavage Failure Does Not Establish Centrosome Amplification in Untransformed Human Cells’, The Journal of Cell Biology, vol. 194, no. 2, 2011, doi: 10.1083/jcb.201101073. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144409/
[82]
E. A. Nigg and T. Stearns, ‘The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries’, Nature Cell Biology, vol. 13, no. 10, pp. 1154–1160, 2011, doi: 10.1038/ncb2345.
[83]
C. Tomasetti and B. Vogelstein, ‘Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions’, Science, vol. 347, no. 6217, pp. 78–81, 2015, doi: 10.1126/science.1260825.
[84]
P. Nurse, ‘The Richard Dimbleby Lecture 2012: “The New Enlightenment”’. 2012 [Online]. Available: https://royalsociety.org/~/media/Royal_Society_Content/people/fellows/2012-02-29-Dimbleby.pdf
[85]
D. Wodarz and A. G. Zauber, ‘Cancer: Risk Factors and Random Chances’, Nature, vol. 517, no. 7536, pp. 563–564, 2015, doi: 10.1038/517563a.
[86]
S. Wu, ‘Substantial Contribution of Extrinsic Risk Factors to Cancer Development’, Nature, vol. 529, no. 7584, pp. 43–47, 2015, doi: 10.1038/nature16166.
[87]
J. George, ‘Comprehensive Genomic Profiles of Small Cell Lung Cancer’, Nature, vol. 524, no. 7563, pp. 47–53, 2015, doi: 10.1038/nature14664.
[88]
H. Gao, ‘The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites’, Cell, vol. 150, no. 4, pp. 764–779, 2012, doi: 10.1016/j.cell.2012.06.035.
[89]
H. Davis, ‘Aberrant Epithelial GREM1 Expression Initiates Colonic Tumorigenesis from Cells Outside the Stem Cell Niche’, Nature Medicine, vol. 21, no. 1, pp. 62–70, 2014, doi: 10.1038/nm.3750.
[90]
D. P. Brazil, ‘BMP Signalling: Agony and Antagony in the Family’, Trends in Cell Biology, vol. 25, no. 5, pp. 249–264, 2015, doi: 10.1016/j.tcb.2014.12.004.
[91]
X. H.-F. Zhang, ‘Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma’, Cell, vol. 154, no. 5, pp. 1060–1073, 2013, doi: 10.1016/j.cell.2013.07.036.
[92]
T. A. Guise, ‘Breast Cancer Bone Metastases: It’s All about the Neighborhood’, Cell, vol. 154, no. 5, pp. 957–959, 2013, doi: 10.1016/j.cell.2013.08.020.
[93]
T. Zhao, ‘Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells’, Cell Stem Cell, vol. 17, no. 3, pp. 353–359, 2015, doi: 10.1016/j.stem.2015.07.021.
[94]
J. Cao, ‘Cells Derived From iPSC Can Be Immunogenic — Yes or No?’, Protein & Cell, vol. 5, no. 1, pp. 1–3, 2014, doi: 10.1007/s13238-013-0003-2.
[95]
J. Swift, ‘Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation’, Science, vol. 341, no. 6149, pp. 1240104–1240104, 2013, doi: 10.1126/science.1240104.
[96]
R. Bainer and V. Weaver, ‘Strength Under Tension’, Science, vol. 341, no. 6149, pp. 965–966, 2013, doi: 10.1126/science.1243643.
[97]
F. Guilak, ‘Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix’, Cell Stem Cell, vol. 5, no. 1, pp. 17–26, 2009, doi: 10.1016/j.stem.2009.06.016.
[98]
P. Rompolas, ‘Spatial Organization Within a Niche as a Determinant of Stem-Cell Fate’, Nature, vol. 502, no. 7472, pp. 513–518, 2013, doi: 10.1038/nature12602.
[99]
V. Greco and S. Guo, ‘Compartmentalized Organization: a Common and Required Feature of Stem Cell Niches?’, Development, vol. 137, no. 10, pp. 1586–1594, 2010, doi: 10.1242/dev.041103.