1.
Lodish HF. Molecular Cell Biology. Eighth edition. W.H. Freeman Macmillan Learning; 2016.
2.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
3.
Weinberg RA. ‘The Biology and Genetics of Cells and Organisms’, ‘The Nature of Cancer’ and ‘Tumor Viruses’. In: The Biology of Cancer. Garland Science; 2007:1-103.
4.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70. doi:10.1016/S0092-8674(00)81683-9
5.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
6.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
7.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
8.
Pico de Coaña Y. Checkpoint Blockade for Cancer Therapy: Revitalizing a Suppressed Immune System. Trends in Molecular Medicine. 2015;21(8):482-491. doi:10.1016/j.molmed.2015.05.005
9.
Postow MA. Nivolumab and Ipilimumab Versus Ipilimumab in Untreated Melanoma. New England Journal of Medicine. 2015;372(21):2006-2017. doi:10.1056/NEJMoa1414428
10.
Maude SL. Chimeric Antigen Receptor T-cell Therapy for ALL. Hematology. 2014;2014(1):559-564. doi:10.1182/asheducation-2014.1.559
11.
Butterfield LH. Cancer Vaccines. BMJ. 2015;350:h988-h988. doi:10.1136/bmj.h988
12.
Lodish HF. Molecular Cell Biology. Eighth edition. W.H. Freeman Macmillan Learning; 2016.
13.
Hynes RO. Integrins:Bidirectional, Allosteric Signaling Machines. Cell. 2002;110(6):673-687. doi:10.1016/S0092-8674(02)00971-6
14.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
15.
Lodish HF. Molecular Cell Biology. Eighth edition. W.H. Freeman Macmillan Learning; 2016.
16.
Mulloy B, Rider CC. Cytokines and Proteoglycans: an Introductory Overview. Biochemical Society Transactions. 2006;34(3):409-413. doi:10.1042/BST0340409
17.
Elenius K. Function of the Syndecans - a Family of Cell Surface Proteoglycans. Journal of Cell Science. 1994;107(11):2975-2982. http://jcs.biologists.org/content/107/11/2975
18.
Olsen BR. Life without Perlecan Has Its Problems. The Journal of Cell Biology. 1999;147(5). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2169336/
19.
Yamada KM. Fibronectins: Structure, Functions and Receptors. Current Opinion in Cell Biology. 1989;1(5):956-963.
20.
Kleinman HK, Weeks BS. Laminin: Structure, Functions and Receptors. Current Opinion in Cell Biology. 1989;1(5):964-967. doi:10.1016/0955-0674(89)90066-5
21.
Sanderson RD. Enzymatic Remodeling of Heparan Sulfate Proteoglycans Within the Tumor Microenvironment: Growth Regulation and the Prospect of New Cancer Therapies. Journal of Cellular Biochemistry. 2005;96(5):897-905. doi:10.1002/jcb.20602
22.
Blundell TL. Crystal Structure of Fibroblast Growth Factor Receptor Ectodomain Bound to Ligand and Heparin. Nature. 2000;407(6807):1029-1034. doi:10.1038/35039551
23.
Nybakken K, Perrimon N. Heparan Sulfate Proteoglycan Modulation of Developmental Signaling in Drosophila. Biochimica et Biophysica Acta (BBA) - General Subjects. 2002;1573(3):280-291. doi:10.1016/S0304-4165(02)00395-1
24.
Keklikoglou I, De Palma M. Cancer: Metastasis Risk After Anti-Macrophage Therapy. Nature. 2014;515(7525):46-47. doi:10.1038/nature13931
25.
Rider CC. Heparin/heparan Sulphate Binding in the TGF-β cytokine Superfamily. Biochemical Society Transactions. 2006;34(3):458-460. doi:10.1042/BST0340458
26.
Lodish HF. Molecular Cell Biology. Eighth edition. W.H. Freeman Macmillan Learning; 2016.
27.
NIH VideoCasting Past Events. https://videocast.nih.gov/pastevents.asp?c=29
28.
Rezza A. Adult Stem Cell Niches. In: Stem Cells in Development and Disease, 107. ; :333-372. doi:10.1016/B978-0-12-416022-4.00012-3
29.
Morrison SJ, Spradling AC. Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell. 2008;132(4):598-611. doi:10.1016/j.cell.2008.01.038
30.
Knoblich JA. Mechanisms of Asymmetric Stem Cell Division. Cell. 2008;132(4):583-597. doi:10.1016/j.cell.2008.02.007
31.
Jiang W. The Implications of Cancer Stem Cells for Cancer Therapy. International Journal of Molecular Sciences. 2012;13(12):16636-16657. doi:10.3390/ijms131216636
32.
Yu Z. Cancer Stem Cells. The International Journal of Biochemistry & Cell Biology. 2012;44(12):2144-2151. doi:10.1016/j.biocel.2012.08.022
33.
Bomken S. Understanding the Cancer Stem Cell. British Journal of Cancer. 2010;103(4). doi:10.1038/sj.bjc.6605821
34.
Meacham CE, Morrison SJ. Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 2013;501(7467):328-337. doi:10.1038/nature12624
35.
De Los Angeles A. Hallmarks of Pluripotency. Nature. 2015;525(7570):469-478. doi:10.1038/nature15515
36.
Chambers I, Tomlinson SR. The Transcriptional Foundation of Pluripotency. Development. 2009;136(14):2311-2322. doi:10.1242/dev.024398
37.
Zhou Q. A Gene Regulatory Network in Mouse Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(42):16438-16443. https://www.jstor.org/stable/25450071
38.
Wang J. A Protein Interaction Network for Pluripotency of Embryonic Stem Cells. Nature. 2006;444(7117):364-368. doi:10.1038/nature05284
39.
Nigg EA, Raff JW. Centrioles, Centrosomes, and Cilia in Health and Disease. Cell. 2009;139(4):663-678. doi:10.1016/j.cell.2009.10.036
40.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
41.
Lemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 2010;141(7):1117-1134. doi:10.1016/j.cell.2010.06.011
42.
Lim WA, Pawson T. Phosphotyrosine Signaling: Evolving a New Cellular Communication System. Cell. 2010;142(5):661-667. doi:10.1016/j.cell.2010.08.023
43.
Hunter T. Receptor Tyrosine Kinases - Function, Families and Evolution | The Biomedical & Life Sciences Collection. Published online 2007. https://hstalks.com/t/447/receptor-tyrosine-kinases-function-families-and-ev/?business
44.
Kazlauskas A. How the PDGF Receptor Induces Cell Proliferation. The Biomedical & Life Sciences Collection. Published online 2007. https://hstalks.com/t/450/how-the-pdgf-receptor-induces-cell-proliferation/?biosci
45.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
46.
Lees J. The pRB/E2F pathway. The Biomedical & Life Sciences Collection. Published online 2009. https://hstalks.com/t/1254/the-prbe2f-pathway/?biosci
47.
Kaiser J. Naked Mole Rat Wins the War on Cancer | Science | AAAS. Published 2009. http://www.sciencemag.org/news/2009/10/naked-mole-rat-wins-war-cancer
48.
Hengartner M. Apoptosis in C. Elegans. The Biomedical & Life Sciences Collection. Published online 2007. https://hstalks.com/t/276/apoptosis-in-c-elegans/?biosci
49.
Dynlacht B. The E2F Family and Transcriptional Control of the Mammalian Cell Cycle. The Biomedical & Life Sciences Collection. Published online 2007. https://hstalks.com/t/672/the-e2f-family-and-transcriptional-control-of-the-/?biosci
50.
Oren M. p53 and Apoptosis. The Biomedical & Life Sciences Collection. Published online 2007. https://hstalks.com/t/291/p53-and-apoptosis/?biosci
51.
Chen HZ. Emerging Roles of E2Fs in Cancer: an Exit From Cell Cycle Control. Nature Reviews Cancer. 2009;9(11):785-797. doi:10.1038/nrc2696
52.
van den Heuvel S, Dyson NJ. Conserved Functions of the pRB and E2F Families. Nature Reviews Molecular Cell Biology. 2008;9(9):713-724. doi:10.1038/nrm2469
53.
Couzin-Frankel J. The Bad Luck of Cancer. Science. 2015;347(6217):12-12. doi:10.1126/science.347.6217.12
54.
Tomasetti C, Vogelstein B. Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science. 2015;347(6217):78-81. doi:10.1126/science.1260825
55.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
56.
Weinberg RA. The Biology of Cancer. Second edition. Garland Science; 2014.
57.
Weinberg R. Invasion, Metastasis and Stem Cells. The Biomedical & Life Sciences Collection. Published online 2009. https://hstalks.com/t/1376/invasion-metastasis-and-stem-cells/?biosci
58.
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
59.
Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell. 2000;100(1):57-70. doi:10.1016/S0092-8674(00)81683-9
60.
Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006;127(4):679-695. doi:10.1016/j.cell.2006.11.001
61.
Nguyen DX. Metastasis: from Dissemination to Organ-Specific Colonization. Nature Reviews Cancer. 2009;9(4):274-284. doi:10.1038/nrc2622
62.
Pleasance ED. A Small-Cell Lung Cancer Genome with Complex Signatures of Tobacco Exposure. Nature. 2010;463(7278):184-190. doi:10.1038/nature08629
63.
Gupta GP, Massagué J. Cancer Metastasis: Building a Framework. Cell. 2006;127(4):679-695. doi:10.1016/j.cell.2006.11.001
64.
Hinchcliffe EH. Requirement of Cdk2-Cyclin E Activity for Repeated Centrosome Reproduction in Xenopus Egg Extracts. Science. 1999;283(5403):851-854. http://www.jstor.org/stable/2897252?seq=1#page_scan_tab_contents
65.
Nigg EA. Centrosome Duplication in Mammalian Somatic Cells Requires E2F and Cdk2-cyclin A. Nature Cell Biology. 1999;1(2):88-93. doi:10.1038/10054
66.
Pazour GJ. Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella. The Journal of Cell Biology. 2000;151(3). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2185580/
67.
Lingle WL. Centrosome Amplification Drives Chromosomal Instability in Breast Tumor Development. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(4):1978-1983. http://www.jstor.org/stable/3057904?seq=1#page_scan_tab_contents
68.
Meraldi P. Aurora-A Overexpression Reveals Tetraploidization as a Major Route to Centrosome Amplification in p53-/- Cells. The EMBO Journal. 2002;21(4):483-492. doi:10.1093/emboj/21.4.483
69.
Nigg EA. Centrosome Aberrations: Cause or Consequence of Cancer Progression? Nature Reviews Cancer. 2002;2(11):815-825. doi:10.1038/nrc924
70.
Pazour GJ, Rosenbaum JL. Intraflagellar Transport and Cilia-Dependent Diseases. Trends in Cell Biology. 2002;12(12):551-555. doi:10.1016/S0962-8924(02)02410-8
71.
Pazour GJ. Polycystin-2 Localizes to Kidney Cilia and the Ciliary Level is Elevated in Orpk Mice With Polycystic Kidney Disease. Current Biology. 2002;12(11):R378-R380. doi:10.1016/S0960-9822(02)00877-1
72.
Ansley SJ. Basal Body Dysfunction is a Likely Cause of Pleiotropic Bardet–Biedl Syndrome. Nature. 2003;425(6958):628-633. doi:10.1038/nature02030
73.
Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-invasive Carcinomas. Cancer Research. 2003;63. http://cancerres.aacrjournals.org/content/63/6/1398
74.
Meraldi P. Aurora Kinases Link Chromosome Segregation and Cell Division to Cancer Susceptibility. Current Opinion in Genetics & Development. 2004;14(1):29-36. doi:10.1016/j.gde.2003.11.006
75.
Pazour GJ. Intraflagellar Transport and Cilia-Dependent Renal Disease: The Ciliary Hypothesis of Polycystic Kidney Disease. Journal of the American Society of Nephrology. 2004;15(10):2528-2536. doi:10.1097/01.ASN.0000141055.57643.E0
76.
Habedanck R. The Polo Kinase Plk4 Functions in Centriole Duplication. Nature Cell Biology. 2005;7(11):1140-1146. doi:10.1038/ncb1320
77.
Badano JL. The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annual Review of Genomics and Human Genetics. 2006;7(1):125-148. doi:10.1146/annurev.genom.7.080505.115610
78.
Ganem NJ. A Mechanism Linking Extra Centrosomes to Chromosomal Instability. Nature. 2009;460(7252):278-282. doi:10.1038/nature08136
79.
Nigg EA, Raff JW. Centrioles, Centrosomes, and Cilia in Health and Disease. Cell. 2009;139(4):663-678. doi:10.1016/j.cell.2009.10.036
80.
Lončarek J. Centriole Reduplication During Prolonged Interphase Requires Procentriole Maturation Governed by Plk1. Current Biology. 2010;20(14):1277-1282. doi:10.1016/j.cub.2010.05.050
81.
Krzywicka-Racka A. Repeated Cleavage Failure Does Not Establish Centrosome Amplification in Untransformed Human Cells. The Journal of Cell Biology. 2011;194(2). doi:10.1083/jcb.201101073
82.
Nigg EA, Stearns T. The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries. Nature Cell Biology. 2011;13(10):1154-1160. doi:10.1038/ncb2345
83.
Tomasetti C, Vogelstein B. Variation in Cancer Risk Among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science. 2015;347(6217):78-81. doi:10.1126/science.1260825
84.
Nurse P. The Richard Dimbleby Lecture 2012: ‘The New Enlightenment’. Published online 2012. https://royalsociety.org/~/media/Royal_Society_Content/people/fellows/2012-02-29-Dimbleby.pdf
85.
Wodarz D, Zauber AG. Cancer: Risk Factors and Random Chances. Nature. 2015;517(7536):563-564. doi:10.1038/517563a
86.
Wu S. Substantial Contribution of Extrinsic Risk Factors to Cancer Development. Nature. 2015;529(7584):43-47. doi:10.1038/nature16166
87.
George J. Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature. 2015;524(7563):47-53. doi:10.1038/nature14664
88.
Gao H. The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites. Cell. 2012;150(4):764-779. doi:10.1016/j.cell.2012.06.035
89.
Davis H. Aberrant Epithelial GREM1 Expression Initiates Colonic Tumorigenesis from Cells Outside the Stem Cell Niche. Nature Medicine. 2014;21(1):62-70. doi:10.1038/nm.3750
90.
Brazil DP. BMP Signalling: Agony and Antagony in the Family. Trends in Cell Biology. 2015;25(5):249-264. doi:10.1016/j.tcb.2014.12.004
91.
Zhang XHF. Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell. 2013;154(5):1060-1073. doi:10.1016/j.cell.2013.07.036
92.
Guise TA. Breast Cancer Bone Metastases: It’s All about the Neighborhood. Cell. 2013;154(5):957-959. doi:10.1016/j.cell.2013.08.020
93.
Zhao T. Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell. 2015;17(3):353-359. doi:10.1016/j.stem.2015.07.021
94.
Cao J. Cells Derived From iPSC Can Be Immunogenic — Yes or No? Protein & Cell. 2014;5(1):1-3. doi:10.1007/s13238-013-0003-2
95.
Swift J. Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation. Science. 2013;341(6149):1240104-1240104. doi:10.1126/science.1240104
96.
Bainer R, Weaver V. Strength Under Tension. Science. 2013;341(6149):965-966. doi:10.1126/science.1243643
97.
Guilak F. Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell. 2009;5(1):17-26. doi:10.1016/j.stem.2009.06.016
98.
Rompolas P. Spatial Organization Within a Niche as a Determinant of Stem-Cell Fate. Nature. 2013;502(7472):513-518. doi:10.1038/nature12602
99.
Greco V, Guo S. Compartmentalized Organization: a Common and Required Feature of Stem Cell Niches? Development. 2010;137(10):1586-1594. doi:10.1242/dev.041103