1.
Gullan, P.J., Cranston, P.S.: The Insects: An Outline of Entomology. Wiley-Blackwell, Chichester, West Sussex (2014).
2.
Gullan, P.J., Cranston, P.S.: The Insects: An Outline of Entomology. John Wiley & Sons, Incorporated (2014).
3.
Chapman, R.F.: The Insects: Structure and Function. Cambridge University Press, Cambridge (2013).
4.
Klowden, M.J., Klowden, M.J.: Physiological Systems in Insects. Elsevier/AP, Amsterdam (2013).
5.
Klowden, M.J.: Physiological Systems in Insects. Academic Press, an imprint of Elsevier, London (2013).
6.
Engel, M.S.: Insect Evolution. Current Biology. 25, R868–R872 (2015). https://doi.org/10.1016/j.cub.2015.07.059.
7.
Scudder, G.G.E.: The Importance of Insects. In: Insect Biodiversity: Science and Society. pp. 7–32. Wiley-Blackwell, Chichester (2009).
8.
Gullan, P.J., Cranston, P.S.: Reproduction. In: The Insects: An Outline of Entomology. pp. 125–156. Wiley-Blackwell, Chichester, West Sussex (2014).
9.
Gullan, P.J., Cranston, P.S.: Reproduction. In: The Insects: An Outline of Entomology. pp. 125–155. John Wiley & Sons, Incorporated (2014).
10.
Alonzo, S.H., Pizzari, T.: Selection on Female Remating Interval Is Influenced by Male Sperm Competition Strategies and Ejaculate Characteristics. Philosophical Transactions of the Royal Society B: Biological Sciences. 368, 20120044–20120044 (2013). https://doi.org/10.1098/rstb.2012.0044.
11.
Bonduriansky, R.: The Evolution of Male Mate Choice in Insects: A Synthesis of Ideas and Evidence. Biological Reviews of the Cambridge Philosophical Society. 76, 305–339 (2001). https://doi.org/10.1017/S1464793101005693.
12.
Burgevin, L., Friberg, U., Maklakova, A.A.: Intersexual Correlation for Same-Sex Sexual Behaviour in an Insect. Animal Behaviour. 85, 759–762 (2013). https://doi.org/10.1016/j.anbehav.2013.01.017.
13.
Johnstone, R.A., Keller, L.: How Males Can Gain by Harming Their Mates: Sexual Conflict, Seminal Toxins, and the Cost of Mating. The American Naturalist. 156, 368–377 (2000). https://doi.org/10.1086/303392.
14.
Michalczyk, Ł., Millard, A.L., Martin, O.Y., Lumley, A.J., Emerson, B.C., Chapman, T., Gage, M.J.G.: Inbreeding Promotes Female Promiscuity. Science. 333, 1739–1742 (2011). https://doi.org/10.1126/science.1207314.
15.
Edvardsson, M.: Why Do Male Callosobruchus Maculatus Harm Their Mates? Behavioral Ecology. 16, 788–793 (2005). https://doi.org/10.1093/beheco/ari055.
16.
Lihoreau, M., Zimmer, C., Rivault, C.: Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding. PLoS ONE. 3, (2008). https://doi.org/10.1371/journal.pone.0003365.
17.
Perry, J.C., Sirot, L., Wigby, S.: The Seminal Symphony: How to Compose an Ejaculate. Trends in Ecology & Evolution. 28, 414–422 (2013). https://doi.org/10.1016/j.tree.2013.03.005.
18.
Simmons, L.W., Tan, Y.F., Millar, A.H.: Sperm and Seminal Fluid Proteomes of the Field Cricket Teleogryllus Oceanicus: Identification of Novel Proteins Transferred to Females at Mating. Insect Molecular Biology. 22, 115–130 (2013). https://doi.org/10.1111/imb.12007.
19.
Gullan, P.J., Cranston, P.S.: Insect Development and Life Histories. In: The Insects: An Outline of Entomology. Wiley-Blackwell, Chichester, West Sussex (2014).
20.
Gullan, P.J., Cranston, P.S.: Insect Development and Life Histories. In: The Insects: An Outline of Entomology. John Wiley & Sons, Incorporated (2014).
21.
Bale, J.S.: Classes of Insect Cold Hardiness. Functional Ecology. 7, 751–753 (1993).
22.
Hoback, W.W., Stanley, D.W.: Insects in Hypoxia. Journal of Insect Physiology. 47, 533–542 (2001). https://doi.org/10.1016/S0022-1910(00)00153-0.
23.
MacMillan, H.A., Findsen, A., Pedersen, T.H., Overgaard, J.: Cold-Induced Depolarization of Insect Muscle: Differing Roles of Extracellular K  During Acute and Chronic Chilling. Journal of Experimental Biology. 217, 2930–2938 (2014). https://doi.org/10.1242/jeb.107516.
24.
Ju, R.-T., Xiao, Y.-Y., Li, B.: Rapid Cold Hardening Increases Cold and Chilling Tolerances More Than Acclimation in the Adults of the Sycamore Lace Bug, Corythucha Ciliata (Say) (Hemiptera: Tingidae). Journal of Insect Physiology. 57, 1577–1582 (2011). https://doi.org/10.1016/j.jinsphys.2011.08.012.
25.
Lee, R.E.: Insect Cold-Hardiness: To Freeze or Not to Freeze. BioScience. 39, 308–313 (1989). https://doi.org/10.2307/1311113.
26.
Neven, L.G.: Physiological Responses of Insects to Heat. Postharvest Biology and Technology. 21, 103–111 (2000). https://doi.org/10.1016/S0925-5214(00)00169-1.
27.
Teets, N.M., Yi, S.-X., Lee, R.E., Denlinger, D.L.: Calcium Signaling Mediates Cold Sensing in Insect Tissues. Proceedings of the National Academy of Sciences. 110, 9154–9159 (2013). https://doi.org/10.1073/pnas.1306705110.
28.
Gullan, P.J., Cranston, P.S.: Insect Predation and Parasitism. In: The Insects: An Outline of Entomology. Wiley-Blackwell, Chichester, West Sussex (2014).
29.
Gullan, P.J., Cranston, P.S.: Insect Predation and Parasitism. In: The Insects: An Outline of Entomology. John Wiley & Sons, Incorporated (2014).
30.
Skelhorn, J., Rowland, H.M., Speed, M.P., Ruxton, G.D.: Masquerade: Camouflage Without Crypsis. Science. 327, 51–51 (2007).
31.
Church, S.C., BennettInnes, A.T.D., Cuthill, C., Hunt, S., Hart, N.S., Partridge, J.C.: Does Lepidopteran Larval Crypsis Extend into the Ultraviolet? Naturwissenschaften. 85, 189–192 (1998). https://doi.org/10.1007/s001140050483.
32.
Harvey, D., Gange, A.: Size Variation and Mating Success in the Stag Beetle, Lucanus Cervus. Physiological Entomology. 31, 218–226 (2006). https://doi.org/10.1111/j.1365-3032.2006.00509.x.
33.
Howse, P.E.: Lepidopteran Wing Patterns and the Evolution of Satyric Mimicry. Biological Journal of the Linnean Society. 109, 203–214 (2013). https://doi.org/10.1111/bij.12027.
34.
McCullough, E.L., Emlen, D.J.: Evaluating the Costs of a Sexually Selected Weapon: Big Horns at a Small Price. Animal Behaviour. 86, 977–985 (2013). https://doi.org/10.1016/j.anbehav.2013.08.017.
35.
Jones, R.T.: Wing Shape Variation Associated With Mimicry In Butterflies. Evolution. 67, 2323–2334 (2013). https://doi.org/10.1111/evo.12114.
36.
Gullan, P.J., Cranston, P.S.: The Insects: An Outline of Entomology. Wiley-Blackwell, Chichester, West Sussex (2014).
37.
Gullan, P.J., Cranston, P.S.: The Insects: An Outline of Entomology. John Wiley & Sons, Incorporated (2014).
38.
Hallem, E.A., Dahanukar, A., Carlson, J.R.: Insect Odor and Taste Receptors. Annual Review of Entomology. 51, 113–135 (2006). https://doi.org/10.1146/annurev.ento.51.051705.113646.
39.
Hansson, B.S.: A Bug’s Smell – Research Into Insect Olfaction. Trends in Neurosciences. 25, 270–274 (2002). https://doi.org/10.1016/S0166-2236(02)02140-9.
40.
Hansson, B.S., Stensmyr, M.C.: Evolution of Insect Olfaction. Neuron. 72, 698–711 (2011). https://doi.org/10.1016/j.neuron.2011.11.003.
41.
Siciliano, P., Hea, X.L., Woodcocka, C., Picketta, J.A., Fielda, L.M., Birketta, M.A., Kalinovac, B., Gomulskib, L.M., Scolarib, F., Gasperib, G., Malacridab, A.R., Zhoua, J.J.: Identification of Pheromone Components and Their Binding Affinity to the Odorant Binding Protein CcapOBP83a-2 of the Mediterranean Fruit Fly, Ceratitis Capitata. Insect Biochemistry and Molecular Biology. 48, 51–62 (2014). https://doi.org/10.1016/j.ibmb.2014.02.005.
42.
Gullan, P.J., Cranston, P.S.: Sensory Systems and Behaviour. In: The Insects: An Outline of Entomology. Wiley-Blackwell, Chichester, West Sussex (2014).
43.
Gullan, P.J., Cranston, P.S.: Sensory Systems and Behaviour. In: The Insects: An Outline of Entomology. John Wiley & Sons, Incorporated (2014).
44.
Klowden, M.J.: Communication Systems. In: Physiological Systems in Insects. pp. 604–648. Elsevier/AP, Amsterdam (2013).
45.
Klowden, M.J.: Communication Systems. In: Physiological Systems in Insects. pp. 603–648. Academic Press, an imprint of Elsevier, London (2013).
46.
Cocroft, R.B., Rodriguez, R.L.: The Behavioral Ecology of Insect Vibrational Communication. BioScience. 55, (2005). https://doi.org/10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2.
47.
Gullan, P.J., Cranston, P.S.: Internal Anatomy and Physiology. In: The Insects: An Outline of Entomology. Wiley-Blackwell, Chichester, West Sussex (2014).
48.
Gullan, P.J., Cranston, P.S.: Internal Anatomy and Physiology. In: The Insects: An Outline of Entomology. John Wiley & Sons, Incorporated (2014).
49.
Douglas, A.E.: Phloem-Sap Feeding by Animals: Problems and Solutions. Journal of Experimental Botany. 57, 747–754 (2006). https://doi.org/10.1093/jxb/erj067.
50.
Kukor, J.J.: The Role of Ingested Fungal Enzymes in Cellulose Digestion in the Larvae of Cerambycid Beetles                  Original text. Physiological Zoology. 61, 364–371 (1988).
51.
MacMahon, J.A.: Harvester Ants (Pogonomyrmex SPP.): Their Community and Ecosystem Influences                  Original text. Annual Review of Ecology and Systematics. 31, 265–291 (2000).
52.
Sabree, Z.L.: Nitrogen Recycling and Nutritional Provisioning by Blattabacterium, the Cockroach Endosymbiont                  Original text. Proceedings of the National Academy of Sciences of the United States of America. 106, 19521–19526 (2009).
53.
Six, D.L.: The Bark Beetle Holobiont: Why Microbes Matter. Journal of Chemical Ecology. 39, 989–1002 (2013). https://doi.org/10.1007/s10886-013-0318-8.
54.
Jonsell, M.: Substrate Requirements of Red-Listed Saproxylic Invertebrates in Sweden. Biodiversity & Conservation. 7, 749–764 (1998). https://doi.org/10.1023/A:1008888319031.
55.
Engel, P., Moran, N.A.: The Gut Microbiota of Insects – Diversity in Structure and Function. FEMS Microbiology Reviews. 37, 699–735 (2013). https://doi.org/10.1111/1574-6976.12025.
56.
Harvey, D., Gange, A.: The Stag Beetle: a Collaborative Conservation Study Across Europe. Insect Conservation and Diversity. 4, 2–3 (2011). https://doi.org/10.1111/j.1752-4598.2010.00125.x.
57.
Harvey, D., Gange, A.C., Hawes, C.J., Rink, M.: Bionomics and Distribution of the Stag Beetle, Lucanus Cervus (L.) Across Europe. Insect Conservation and Diversity. 4, 23–38 (2011). https://doi.org/10.1111/j.1752-4598.2010.00107.x.
58.
Harvey, D., Hawes, C.J., Gange, A.C., Finch, P., Chesmore, D., Farr, I.: Development of Non-Invasive Monitoring Methods for Larvae and Adults of the Stag Beetle, Lucanus Cervus. Insect Conservation and Diversity. 4, 4–14 (2011). https://doi.org/10.1111/j.1752-4598.2009.00072.x.
59.
Larsson, M.C., Svensson, G.P.: Pheromone Monitoring of Rare and Threatened Insects: Exploiting a Pheromone-Kairomone System to Estimate Prey and Predator Abundance                  Original text. Conservation Biology. 23, 1516–1525 (2009).
60.
Musa, N., Andersson, K., Burman, J., Andersson, F., Hedenström, E., Jansson, N., Paltto, H., Westerberg, L., Winde, I., Larsson, M.C., Bergman, K.-O., Milberg, P.: Using Sex Pheromone and a Multi-Scale Approach to Predict the Distribution of a Rare Saproxylic Beetle. PLoS ONE. 8, (2013). https://doi.org/10.1371/journal.pone.0066149.
61.
Svensson, G.P., Larsson, M.C.: Enantiomeric Specificity in a Pheromone–Kairomone System of Two Threatened Saproxylic Beetles, Osmoderma Eremita and Elater Ferrugineus. Journal of Chemical Ecology. 34, 189–197 (2008). https://doi.org/10.1007/s10886-007-9423-x.
62.
Tolasch, T., von Fragstein, M., Steidle, J.L.M.: Sex Pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). Journal of Chemical Ecology. 33, 2156–2166 (2007). https://doi.org/10.1007/s10886-007-9365-3.
63.
Andersson, K., Bergman, K.-O., Andersson, F., Hedenström, E., Jansson, N., Burman, J., Winde, I., Larsson, M.C., Milberg, P.: High-Accuracy Sampling of Saproxylic Diversity Indicators at Regional Scales With Pheromones: The Case of Elater Ferrugineus (Coleoptera, Elateridae). Biological Conservation. 171, 156–166 (2014). https://doi.org/10.1016/j.biocon.2014.01.007.
64.
Ugelvig, L.V., Cremer, S.: Effects of Social Immunity and Unicoloniality on Host-Parasite Interactions in Invasive Insect Societies. Functional Ecology. 26, 1300–1312 (2012). https://doi.org/10.1111/1365-2435.12013.
65.
Moritz, R.F.A., Härtel, S., Neumann, P.: Global Invasions of the Western Honeybee (Apis Mellifera) and the Consequences for Biodiversity. Écoscience. 12, 289–301 (2005). https://doi.org/10.2980/i1195-6860-12-3-289.1.
66.
Manfredi, F., Grozinger, C.M., Beani, L.: Examining the "Evolution of Increased Competitive Ability” Hypothesis in Response to Parasites and Pathogens in the Invasive Paper Wasp Polistes Dominula. Naturwissenschaften. 100, 219–228 (2013). https://doi.org/10.1007/s00114-013-1014-9.
67.
Ascunce, M.S., Yang, C.-C., Oakey, J., Calcaterra, L., Wu, W.-J., Shih, C.-J., Goudet, J., Ross, K.G., Shoemaker, D.: Global Invasion History of the Fire Ant Solenopsis Invicta. Science. 331, 1066–1068 (2011).
68.
Saikkonen, K., Saari, S., Helander, M.: Defensive Mutualism Between Plants and Endophytic Fungi? Fungal Diversity. 41, 101–113 (2010). https://doi.org/10.1007/s13225-010-0023-7.
69.
Wearn, J.A., Sutton, B.C., Morley, N.J., Gange, A.C.: Species and Organ Specificity of Fungal Endophytes in Herbaceous Grassland Plants. Journal of Ecology. 100, 1085–1092 (2012).
70.
Yan, J.F., Broughton, S.J., Yang, S.L., Gange, A.C.: Do Endophytic Fungi Grow Through Their Hosts Systemically? Fungal Ecology. 13, 53–59 (2015). https://doi.org/10.1016/j.funeco.2014.07.005.
71.
Faeth, S.H.: Are Endophytic Fungi Defensive Plant Mutualists? Oikos. 98, 25–36 (2002).
72.
Gange, A.C., Eschen, R., Wearn, J.A., Thawer, A., Sutton, B.C.: Differential Effects of Foliar Endophytic Fungi on Insect Herbivores Attacking a Herbaceous Plant. Oecologia. 168, (2012).
73.
Barto, E.K., Rillig, M.C.: Does Herbivory Really Suppress Mycorrhiza? a Meta-Analysis. Journal of Ecology. 98, 745–753 (2010).
74.
Gange, A.C., West, H.M.: Interactions between Arbuscular Mycorrhizal Fungi and Foliar-Feeding Insects in Plantago lanceolata L. The New Phytologist. 128, 79–87 (1994).
75.
Gange, A.C., Smith, A.K.: Arbuscular Mycorrhizal Fungi Influence Visitation Rates of Pollinating Insects. Ecological Entomology. 30, 600–606 (2005). https://doi.org/10.1111/j.0307-6946.2005.00732.x.
76.
Koricheva, J., Gange, A.C., Jones, T.: Effects of Mycorrhizal Fungi on Insect Herbivores: A Meta-Analysis. Ecology. 90, 2088–2097 (2009).
77.
Gange, A.C., Brown, V.K., Aplin, D.M.: Multitrophic Links Between Arbuscular Mycorrhizal Fungi and Insect Parasitoids. Ecology Letters. 6, 1051–1055 (2003). https://doi.org/10.1046/j.1461-0248.2003.00540.x.
78.
Simon, A.L., Wellham, P.A.D., Aradottir, G.I., Gange, A.C.: Unravelling Mycorrhiza-Induced Wheat Susceptibility to the English Grain Aphid Sitobion Avenae. Scientific Reports. 7, (2017). https://doi.org/10.1038/srep46497.
79.
Ehrlich, P.R., Raven, P.H.: Butterflies and Plants: A Study in Coevolution. Evolution. 18, 586–608 (1964). https://doi.org/10.2307/2406212.
80.
Farrell, B.D.: ‘Inordinate Fondness’ Explained: Why are There so Many Beetles?                  Original text. Science. 281, 555–559 (1998).
81.
Becerra, J.X.: Insects on Plants: Macroevolutionary Chemical Trends in Host Use                  Original text. Science. 276, 253–256 (1997).
82.
Becerra, J.X.: Synchronous Coadaptation in an Ancient Case of Herbivory. Proceedings of the National Academy of Sciences of the United States of America. 100, 12804–12807 (2003).
83.
Becerra, J.X.: Macroevolutionary Chemical Escalation in an Ancient Plant-Herbivore Arms Race                  Original text. Proceedings of the National Academy of Sciences of the United States of America. 106, 18062–18066 (2009).
84.
Agrawal, A.A.: Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science. 338, 113–116 (2012). https://doi.org/10.1126/science.1225977.
85.
Zust, T., Heichinger, C., Grossniklaus, U., Harrington, R., Kliebenstein, D.J., Turnbull, L.A.: Natural Enemies Drive Geographic Variation in Plant Defenses. Science. 338, 116–119 (2012). https://doi.org/10.1126/science.1226397.
86.
Wise, M.J., Rausher, M.D.: Evolution of Resistance to a Multiple-Herbivore Community: Genetic Correlations, Diffuse Coevolution, and Constraints on the Plant’s Response to Selection. Evolution. 67, 1767–1779 (2013). https://doi.org/10.1111/evo.12061.
87.
Castagneyrol, B., Giffard, B., Péré, C., Jactel, H.: Plant Apparency, an Overlooked Driver of Associational Resistance to Insect Herbivory. Journal of Ecology. 101, 418–429 (2013). https://doi.org/10.1111/1365-2745.12055.
88.
Barbosa, P., Hines, J., Kaplan, I., Martinson, H., Szczepaniec, A., Szendrei, Z.: Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors                  Original text. Annual Review of Ecology, Evolution, and Systematics. 40, 1–20 (2009).
89.
Castagneyrol, B., Jactel, H., Vacher, C., Brockerhoff, E.G., Koricheva, J.: Effects of Plant Phylogenetic Diversity on Herbivory Depend on Herbivore Specialization. Journal of Applied Ecology. 51, 134–141 (2014). https://doi.org/10.1111/1365-2664.12175.
90.
Tooker, J.F., Frank, S.D.: Genotypically Diverse Cultivar Mixtures for Insect Pest Management and Increased Crop Yields. Journal of Applied Ecology. 49, 974–985 (2012). https://doi.org/10.1111/j.1365-2664.2012.02173.x.
91.
Letourneau, D.K., Armbrecht, I., Riviera, B.S., Lerma, J.M., Carmona, E.J., Daza, M.C., Escobar, S., Galindo, V., Gutiérrez, C., López, S.D., Mejía, J.L., Rangel, A.M.A., Rangel, J.H., Rivera, L., Saavedra, C.A., Torres, A.M., Trujillo, A.R.: Does Plant Diversity Benefit Agroecosystems? A Synthetic Review. Ecological Applications. 21, 9–21 (2011).
92.
White, J.A., Whitham, T.G.: Associational Susceptibility of Cottonwood to a Box Elder Herbivore. Ecology. 81, 1795–1803 (2000). https://doi.org/10.2307/177271.
93.
Kaitaniemi, P., Riihimäki, J., Koricheva, J., Vehviläinen, H.: Experimental Evidence for Associational Resistance Against the European Pine Sawfly in Mixed Tree Stands. Silva Fennica. 41, 259–268 (2007).
94.
Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R., Williamson, M.S.: The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology. 51, 41–51 (2014). https://doi.org/10.1016/j.ibmb.2014.05.003.
95.
Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R., Williamson, M.S.: The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology. 51, 41–51 (2014). https://doi.org/10.1016/j.ibmb.2014.05.003.
96.
Shaw, R.H., Tanner, R., Djeddour, D., Cortat, G.: Classical Biological Control of Fallopia Japonica in the United Kingdom - Lessons for Europe. Weed Research. 51, 552–558 (2011). https://doi.org/10.1111/j.1365-3180.2011.00880.x.
97.
Williams, F., Eschen, R., Harris, A., Djeddour, D., Pratt, C., Shaw, R.S., Varia, S., Lamontagne-Godwin, J., Thomas, S.E., Murphy, S.T.: The Economic Cost of Invasive Non-Native Species on Great Britain, http://www.nonnativespecies.org/downloadDocument.cfm?id=487, (2010).
98.
Sheppard, A.W., Shaw, R.H., Sforza, R.: Top 20 Environmental Weeds for Classical Biological Control in Europe: A Review of Opportunities, Regulations and Other Barriers to Adoption. Weed Research. 46, 93–117 (2006). https://doi.org/10.1111/j.1365-3180.2006.00497.x.
99.
Culliney, T.W.: Benefits of Classical Biological Control for Managing Invasive Plants. Critical Reviews in Plant Sciences. 24, 131–150 (2005). https://doi.org/10.1080/07352680590961649.
100.
Mcfadyen, R.E.C.: Successes in Biological Control of Weeds. Proceedings of the X International Symposium on Biological Control of Weeds. 3–14 (1999).
101.
Cock, M.J.W., Murphy, S.T., Kairo, M.T.K., Thompson, E., Murphy, R.J., Francis, A.W.: Trends in the Classical Biological Control of Insect Pests by Insects: An Update of the Biocat Database. BioControl. 61, 349–363 (2016). https://doi.org/10.1007/s10526-016-9726-3.
102.
Murphy, S.T., LaSalle, J.: Balancing Biological Control Strategies in the IPM of New World Invasive Liriomyza Leafminers in Field Vegetable Crops. Biocontrol News and Information. 20, 91N-104N (1999).
103.
Messing, R., Brodeur, J.: Current Challenges to the Implementation of Classical Biological Control. BioControl. 63, 1–9 (2018). https://doi.org/10.1007/s10526-017-9862-4.
104.
Shaw, R.H., Ellison, C.A., Marchante, H., Pratt, C.F., Schaffner, U., Sforza, R.F.H., Deltoro, V.: Weed Biological Control in the European Union: From Serendipity to Strategy. BioControl. 63, 333–347 (2018). https://doi.org/10.1007/s10526-017-9844-6.
105.
Schwarzländer, M., Hinz, H.L., Winston, R.L., Day, M.D.: Biological Control of Weeds: An Analysis of Introductions, Rates of Establishment and Estimates of Success, Worldwide. BioControl. 63, 319–331 (2018). https://doi.org/10.1007/s10526-018-9890-8.