1.
Gullan, P. J. & Cranston, P. S. The Insects: An Outline of Entomology. (Wiley-Blackwell, 2014).
2.
Gullan, P. J. & Cranston, P. S. The Insects: An Outline of Entomology. (John Wiley & Sons, Incorporated, 2014).
3.
Chapman, R. F. The Insects: Structure and Function. (Cambridge University Press, 2013).
4.
Klowden, M. J. & Klowden, M. J. Physiological Systems in Insects. (Elsevier/AP, 2013).
5.
Klowden, M. J. Physiological Systems in Insects. (Academic Press, an imprint of Elsevier, 2013).
6.
Engel, M. S. Insect Evolution. Current Biology 25, R868–R872 (2015).
7.
Scudder, G. G. E. The Importance of Insects. in Insect Biodiversity: Science and Society 7–32 (Wiley-Blackwell, 2009).
8.
Gullan, P. J. & Cranston, P. S. Reproduction. in The Insects: An Outline of Entomology 125–156 (Wiley-Blackwell, 2014).
9.
Gullan, P. J. & Cranston, P. S. Reproduction. in The Insects: An Outline of Entomology 125–155 (John Wiley & Sons, Incorporated, 2014).
10.
Alonzo, S. H. & Pizzari, T. Selection on Female Remating Interval Is Influenced by Male Sperm Competition Strategies and Ejaculate Characteristics. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120044–20120044 (2013).
11.
Bonduriansky, R. The Evolution of Male Mate Choice in Insects: A Synthesis of Ideas and Evidence. Biological Reviews of the Cambridge Philosophical Society 76, 305–339 (2001).
12.
Burgevin, L., Friberg, U. & Maklakova, A. A. Intersexual Correlation for Same-Sex Sexual Behaviour in an Insect. Animal Behaviour 85, 759–762 (2013).
13.
Johnstone, R. A. & Keller, L. How Males Can Gain by Harming Their Mates: Sexual Conflict, Seminal Toxins, and the Cost of Mating. The American Naturalist 156, 368–377 (2000).
14.
Michalczyk, Ł. et al. Inbreeding Promotes Female Promiscuity. Science 333, 1739–1742 (2011).
15.
Edvardsson, M. Why Do Male Callosobruchus Maculatus Harm Their Mates? Behavioral Ecology 16, 788–793 (2005).
16.
Lihoreau, M., Zimmer, C. & Rivault, C. Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding. PLoS ONE 3, (2008).
17.
Perry, J. C., Sirot, L. & Wigby, S. The Seminal Symphony: How to Compose an Ejaculate. Trends in Ecology & Evolution 28, 414–422 (2013).
18.
Simmons, L. W., Tan, Y. F. & Millar, A. H. Sperm and Seminal Fluid Proteomes of the Field Cricket Teleogryllus Oceanicus: Identification of Novel Proteins Transferred to Females at Mating. Insect Molecular Biology 22, 115–130 (2013).
19.
Gullan, P. J. & Cranston, P. S. Insect Development and Life Histories. in The Insects: An Outline of Entomology (Wiley-Blackwell, 2014).
20.
Gullan, P. J. & Cranston, P. S. Insect Development and Life Histories. in The Insects: An Outline of Entomology (John Wiley & Sons, Incorporated, 2014).
21.
Bale, J. S. Classes of Insect Cold Hardiness. Functional Ecology 7, 751–753 (1993).
22.
Hoback, W. W. & Stanley, D. W. Insects in Hypoxia. Journal of Insect Physiology 47, 533–542 (2001).
23.
MacMillan, H. A., Findsen, A., Pedersen, T. H. & Overgaard, J. Cold-Induced Depolarization of Insect Muscle: Differing Roles of Extracellular K  During Acute and Chronic Chilling. Journal of Experimental Biology 217, 2930–2938 (2014).
24.
Ju, R.-T., Xiao, Y.-Y. & Li, B. Rapid Cold Hardening Increases Cold and Chilling Tolerances More Than Acclimation in the Adults of the Sycamore Lace Bug, Corythucha Ciliata (Say) (Hemiptera: Tingidae). Journal of Insect Physiology 57, 1577–1582 (2011).
25.
Lee, R. E. Insect Cold-Hardiness: To Freeze or Not to Freeze. BioScience 39, 308–313 (1989).
26.
Neven, L. G. Physiological Responses of Insects to Heat. Postharvest Biology and Technology 21, 103–111 (2000).
27.
Teets, N. M., Yi, S.-X., Lee, R. E. & Denlinger, D. L. Calcium Signaling Mediates Cold Sensing in Insect Tissues. Proceedings of the National Academy of Sciences 110, 9154–9159 (2013).
28.
Gullan, P. J. & Cranston, P. S. Insect Predation and Parasitism. in The Insects: An Outline of Entomology (Wiley-Blackwell, 2014).
29.
Gullan, P. J. & Cranston, P. S. Insect Predation and Parasitism. in The Insects: An Outline of Entomology (John Wiley & Sons, Incorporated, 2014).
30.
Skelhorn, J., Rowland, H. M., Speed, M. P. & Ruxton, G. D. Masquerade: Camouflage Without Crypsis. Science 327, 51–51 (2007).
31.
Church, S. C. et al. Does Lepidopteran Larval Crypsis Extend into the Ultraviolet? Naturwissenschaften 85, 189–192 (1998).
32.
Harvey, D. & Gange, A. Size Variation and Mating Success in the Stag Beetle, Lucanus Cervus. Physiological Entomology 31, 218–226 (2006).
33.
Howse, P. E. Lepidopteran Wing Patterns and the Evolution of Satyric Mimicry. Biological Journal of the Linnean Society 109, 203–214 (2013).
34.
McCullough, E. L. & Emlen, D. J. Evaluating the Costs of a Sexually Selected Weapon: Big Horns at a Small Price. Animal Behaviour 86, 977–985 (2013).
35.
Jones, R. T. Wing Shape Variation Associated With Mimicry In Butterflies. Evolution 67, 2323–2334 (2013).
36.
Gullan, P. J. & Cranston, P. S. The Insects: An Outline of Entomology. (Wiley-Blackwell, 2014).
37.
Gullan, P. J. & Cranston, P. S. The Insects: An Outline of Entomology. (John Wiley & Sons, Incorporated, 2014).
38.
Hallem, E. A., Dahanukar, A. & Carlson, J. R. Insect Odor and Taste Receptors. Annual Review of Entomology 51, 113–135 (2006).
39.
Hansson, B. S. A Bug’s Smell – Research Into Insect Olfaction. Trends in Neurosciences 25, 270–274 (2002).
40.
Hansson, B. S. & Stensmyr, M. C. Evolution of Insect Olfaction. Neuron 72, 698–711 (2011).
41.
Siciliano, P. et al. Identification of Pheromone Components and Their Binding Affinity to the Odorant Binding Protein CcapOBP83a-2 of the Mediterranean Fruit Fly, Ceratitis Capitata. Insect Biochemistry and Molecular Biology 48, 51–62 (2014).
42.
Gullan, P. J. & Cranston, P. S. Sensory Systems and Behaviour. in The Insects: An Outline of Entomology (Wiley-Blackwell, 2014).
43.
Gullan, P. J. & Cranston, P. S. Sensory Systems and Behaviour. in The Insects: An Outline of Entomology (John Wiley & Sons, Incorporated, 2014).
44.
Klowden, M. J. Communication Systems. in Physiological Systems in Insects 604–648 (Elsevier/AP, 2013).
45.
Klowden, M. J. Communication Systems. in Physiological Systems in Insects 603–648 (Academic Press, an imprint of Elsevier, 2013).
46.
Cocroft, R. B. & Rodriguez, R. L. The Behavioral Ecology of Insect Vibrational Communication. BioScience 55, (2005).
47.
Gullan, P. J. & Cranston, P. S. Internal Anatomy and Physiology. in The Insects: An Outline of Entomology (Wiley-Blackwell, 2014).
48.
Gullan, P. J. & Cranston, P. S. Internal Anatomy and Physiology. in The Insects: An Outline of Entomology (John Wiley & Sons, Incorporated, 2014).
49.
Douglas, A. E. Phloem-Sap Feeding by Animals: Problems and Solutions. Journal of Experimental Botany 57, 747–754 (2006).
50.
Kukor, J. J. The Role of Ingested Fungal Enzymes in Cellulose Digestion in the Larvae of Cerambycid Beetles                  Original text. Physiological Zoology 61, 364–371 (1988).
51.
MacMahon, J. A. Harvester Ants (Pogonomyrmex SPP.): Their Community and Ecosystem Influences                  Original text. Annual Review of Ecology and Systematics 31, 265–291 (2000).
52.
Sabree, Z. L. Nitrogen Recycling and Nutritional Provisioning by Blattabacterium, the Cockroach Endosymbiont                  Original text. Proceedings of the National Academy of Sciences of the United States of America 106, 19521–19526 (2009).
53.
Six, D. L. The Bark Beetle Holobiont: Why Microbes Matter. Journal of Chemical Ecology 39, 989–1002 (2013).
54.
Jonsell, M. Substrate Requirements of Red-Listed Saproxylic Invertebrates in Sweden. Biodiversity & Conservation 7, 749–764 (1998).
55.
Engel, P. & Moran, N. A. The Gut Microbiota of Insects – Diversity in Structure and Function. FEMS Microbiology Reviews 37, 699–735 (2013).
56.
Harvey, D. & Gange, A. The Stag Beetle: a Collaborative Conservation Study Across Europe. Insect Conservation and Diversity 4, 2–3 (2011).
57.
Harvey, D., Gange, A. C., Hawes, C. J. & Rink, M. Bionomics and Distribution of the Stag Beetle, Lucanus Cervus (L.) Across Europe. Insect Conservation and Diversity 4, 23–38 (2011).
58.
Harvey, D. et al. Development of Non-Invasive Monitoring Methods for Larvae and Adults of the Stag Beetle, Lucanus Cervus. Insect Conservation and Diversity 4, 4–14 (2011).
59.
Larsson, M. C. & Svensson, G. P. Pheromone Monitoring of Rare and Threatened Insects: Exploiting a Pheromone-Kairomone System to Estimate Prey and Predator Abundance                  Original text. Conservation Biology 23, 1516–1525 (2009).
60.
Musa, N. et al. Using Sex Pheromone and a Multi-Scale Approach to Predict the Distribution of a Rare Saproxylic Beetle. PLoS ONE 8, (2013).
61.
Svensson, G. P. & Larsson, M. C. Enantiomeric Specificity in a Pheromone–Kairomone System of Two Threatened Saproxylic Beetles, Osmoderma Eremita and Elater Ferrugineus. Journal of Chemical Ecology 34, 189–197 (2008).
62.
Tolasch, T., von Fragstein, M. & Steidle, J. L. M. Sex Pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). Journal of Chemical Ecology 33, 2156–2166 (2007).
63.
Andersson, K. et al. High-Accuracy Sampling of Saproxylic Diversity Indicators at Regional Scales With Pheromones: The Case of Elater Ferrugineus (Coleoptera, Elateridae). Biological Conservation 171, 156–166 (2014).
64.
Ugelvig, L. V. & Cremer, S. Effects of Social Immunity and Unicoloniality on Host-Parasite Interactions in Invasive Insect Societies. Functional Ecology 26, 1300–1312 (2012).
65.
Moritz, R. F. A., Härtel, S. & Neumann, P. Global Invasions of the Western Honeybee (Apis Mellifera) and the Consequences for Biodiversity. Écoscience 12, 289–301 (2005).
66.
Manfredi, F., Grozinger, C. M. & Beani, L. Examining the "Evolution of Increased Competitive Ability” Hypothesis in Response to Parasites and Pathogens in the Invasive Paper Wasp Polistes Dominula. Naturwissenschaften 100, 219–228 (2013).
67.
Ascunce, M. S. et al. Global Invasion History of the Fire Ant Solenopsis Invicta. Science 331, 1066–1068 (2011).
68.
Saikkonen, K., Saari, S. & Helander, M. Defensive Mutualism Between Plants and Endophytic Fungi? Fungal Diversity 41, 101–113 (2010).
69.
Wearn, J. A., Sutton, B. C., Morley, N. J. & Gange, A. C. Species and Organ Specificity of Fungal Endophytes in Herbaceous Grassland Plants. Journal of Ecology 100, 1085–1092 (2012).
70.
Yan, J. F., Broughton, S. J., Yang, S. L. & Gange, A. C. Do Endophytic Fungi Grow Through Their Hosts Systemically? Fungal Ecology 13, 53–59 (2015).
71.
Faeth, S. H. Are Endophytic Fungi Defensive Plant Mutualists? Oikos 98, 25–36 (2002).
72.
Gange, A. C., Eschen, R., Wearn, J. A., Thawer, A. & Sutton, B. C. Differential Effects of Foliar Endophytic Fungi on Insect Herbivores Attacking a Herbaceous Plant. Oecologia 168, (2012).
73.
Barto, E. K. & Rillig, M. C. Does Herbivory Really Suppress Mycorrhiza? a Meta-Analysis. Journal of Ecology 98, 745–753 (2010).
74.
Gange, A. C. & West, H. M. Interactions between Arbuscular Mycorrhizal Fungi and Foliar-Feeding Insects in Plantago lanceolata L. The New Phytologist 128, 79–87 (1994).
75.
Gange, A. C. & Smith, A. K. Arbuscular Mycorrhizal Fungi Influence Visitation Rates of Pollinating Insects. Ecological Entomology 30, 600–606 (2005).
76.
Koricheva, J., Gange, A. C. & Jones, T. Effects of Mycorrhizal Fungi on Insect Herbivores: A Meta-Analysis. Ecology 90, 2088–2097 (2009).
77.
Gange, A. C., Brown, V. K. & Aplin, D. M. Multitrophic Links Between Arbuscular Mycorrhizal Fungi and Insect Parasitoids. Ecology Letters 6, 1051–1055 (2003).
78.
Simon, A. L., Wellham, P. A. D., Aradottir, G. I. & Gange, A. C. Unravelling Mycorrhiza-Induced Wheat Susceptibility to the English Grain Aphid Sitobion Avenae. Scientific Reports 7, (2017).
79.
Ehrlich, P. R. & Raven, P. H. Butterflies and Plants: A Study in Coevolution. Evolution 18, 586–608 (1964).
80.
Farrell, B. D. ‘Inordinate Fondness’ Explained: Why are There so Many Beetles?                  Original text. Science 281, 555–559 (1998).
81.
Becerra, J. X. Insects on Plants: Macroevolutionary Chemical Trends in Host Use                  Original text. Science 276, 253–256 (1997).
82.
Becerra, J. X. Synchronous Coadaptation in an Ancient Case of Herbivory. Proceedings of the National Academy of Sciences of the United States of America 100, 12804–12807 (2003).
83.
Becerra, J. X. Macroevolutionary Chemical Escalation in an Ancient Plant-Herbivore Arms Race                  Original text. Proceedings of the National Academy of Sciences of the United States of America 106, 18062–18066 (2009).
84.
Agrawal, A. A. Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science 338, 113–116 (2012).
85.
Zust, T. et al. Natural Enemies Drive Geographic Variation in Plant Defenses. Science 338, 116–119 (2012).
86.
Wise, M. J. & Rausher, M. D. Evolution of Resistance to a Multiple-Herbivore Community: Genetic Correlations, Diffuse Coevolution, and Constraints on the Plant’s Response to Selection. Evolution 67, 1767–1779 (2013).
87.
Castagneyrol, B., Giffard, B., Péré, C. & Jactel, H. Plant Apparency, an Overlooked Driver of Associational Resistance to Insect Herbivory. Journal of Ecology 101, 418–429 (2013).
88.
Barbosa, P. et al. Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors                  Original text. Annual Review of Ecology, Evolution, and Systematics 40, 1–20 (2009).
89.
Castagneyrol, B., Jactel, H., Vacher, C., Brockerhoff, E. G. & Koricheva, J. Effects of Plant Phylogenetic Diversity on Herbivory Depend on Herbivore Specialization. Journal of Applied Ecology 51, 134–141 (2014).
90.
Tooker, J. F. & Frank, S. D. Genotypically Diverse Cultivar Mixtures for Insect Pest Management and Increased Crop Yields. Journal of Applied Ecology 49, 974–985 (2012).
91.
Letourneau, D. K. et al. Does Plant Diversity Benefit Agroecosystems? A Synthetic Review. Ecological Applications 21, 9–21 (2011).
92.
White, J. A. & Whitham, T. G. Associational Susceptibility of Cottonwood to a Box Elder Herbivore. Ecology 81, 1795–1803 (2000).
93.
Kaitaniemi, P., Riihimäki, J., Koricheva, J. & Vehviläinen, H. Experimental Evidence for Associational Resistance Against the European Pine Sawfly in Mixed Tree Stands. Silva Fennica 41, 259–268 (2007).
94.
Bass, C. et al. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology 51, 41–51 (2014).
95.
Bass, C. et al. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology 51, 41–51 (2014).
96.
Shaw, R. H., Tanner, R., Djeddour, D. & Cortat, G. Classical Biological Control of Fallopia Japonica in the United Kingdom - Lessons for Europe. Weed Research 51, 552–558 (2011).
97.
Williams, F. et al. The Economic Cost of Invasive Non-Native Species on Great Britain. vol. CAB/001/09 (2010).
98.
Sheppard, A. W., Shaw, R. H. & Sforza, R. Top 20 Environmental Weeds for Classical Biological Control in Europe: A Review of Opportunities, Regulations and Other Barriers to Adoption. Weed Research 46, 93–117 (2006).
99.
Culliney, T. W. Benefits of Classical Biological Control for Managing Invasive Plants. Critical Reviews in Plant Sciences 24, 131–150 (2005).
100.
Mcfadyen, R. E. C. Successes in Biological Control of Weeds. Proceedings of the X International Symposium on Biological Control of Weeds 3–14 (1999).
101.
Cock, M. J. W. et al. Trends in the Classical Biological Control of Insect Pests by Insects: An Update of the Biocat Database. BioControl 61, 349–363 (2016).
102.
Murphy, S. T. & LaSalle, J. Balancing Biological Control Strategies in the IPM of New World Invasive Liriomyza Leafminers in Field Vegetable Crops. Biocontrol News and Information 20, 91N-104N (1999).
103.
Messing, R. & Brodeur, J. Current Challenges to the Implementation of Classical Biological Control. BioControl 63, 1–9 (2018).
104.
Shaw, R. H. et al. Weed Biological Control in the European Union: From Serendipity to Strategy. BioControl 63, 333–347 (2018).
105.
Schwarzländer, M., Hinz, H. L., Winston, R. L. & Day, M. D. Biological Control of Weeds: An Analysis of Introductions, Rates of Establishment and Estimates of Success, Worldwide. BioControl 63, 319–331 (2018).