1.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014.
2.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
3.
Chapman RF. The Insects: Structure and Function. 5th Edition. (Simpson SJ, Douglas AE, eds.). Cambridge University Press; 2013.
4.
Klowden MJ, Klowden MJ. Physiological Systems in Insects. Elsevier/AP; 2013.
5.
Klowden MJ. Physiological Systems in Insects. Academic Press, an imprint of Elsevier; 2013. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=1191551
6.
Engel MS. Insect Evolution. Current Biology. 2015;25(19):R868-R872. doi:10.1016/j.cub.2015.07.059
7.
Scudder GGE. The Importance of Insects. In: Insect Biodiversity: Science and Society. Wiley-Blackwell; 2009:7-32. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=428298
8.
Gullan PJ, Cranston PS. Reproduction. In: The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014:125-156.
9.
Gullan PJ, Cranston PS. Reproduction. In: The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014:125-155. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470
10.
Alonzo SH, Pizzari T. Selection on Female Remating Interval Is Influenced by Male Sperm Competition Strategies and Ejaculate Characteristics. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(1613):20120044-20120044. doi:10.1098/rstb.2012.0044
11.
Bonduriansky R. The Evolution of Male Mate Choice in Insects: A Synthesis of Ideas and Evidence. Biological Reviews of the Cambridge Philosophical Society. 2001;76(3):305-339. doi:10.1017/S1464793101005693
12.
Burgevin L, Friberg U, Maklakova AA. Intersexual Correlation for Same-Sex Sexual Behaviour in an Insect. Animal Behaviour. 2013;85(4):759-762. doi:10.1016/j.anbehav.2013.01.017
13.
Johnstone RA, Keller L. How Males Can Gain by Harming Their Mates: Sexual Conflict, Seminal Toxins, and the Cost of Mating. The American Naturalist. 2000;156(4):368-377. doi:10.1086/303392
14.
Michalczyk Ł, Millard AL, Martin OY, et al. Inbreeding Promotes Female Promiscuity. Science. 2011;333(6050):1739-1742. doi:10.1126/science.1207314
15.
Edvardsson M. Why Do Male Callosobruchus Maculatus Harm Their Mates? Behavioral Ecology. 2005;16(4):788-793. doi:10.1093/beheco/ari055
16.
Lihoreau M, Zimmer C, Rivault C. Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding. PLoS ONE. 2008;3(10). doi:10.1371/journal.pone.0003365
17.
Perry JC, Sirot L, Wigby S. The Seminal Symphony: How to Compose an Ejaculate. Trends in Ecology & Evolution. 2013;28(7):414-422. doi:10.1016/j.tree.2013.03.005
18.
Simmons LW, Tan YF, Millar AH. Sperm and Seminal Fluid Proteomes of the Field Cricket Teleogryllus Oceanicus: Identification of Novel Proteins Transferred to Females at Mating. Insect Molecular Biology. 2013;22(1):115-130. doi:10.1111/imb.12007
19.
Gullan PJ, Cranston PS. Insect Development and Life Histories. In: The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014.
20.
Gullan PJ, Cranston PS. Insect Development and Life Histories. In: The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
21.
Bale JS. Classes of Insect Cold Hardiness. Functional Ecology. 1993;7(6):751-753. https://www.jstor.org/stable/2390198
22.
Hoback WW, Stanley DW. Insects in Hypoxia. Journal of Insect Physiology. 2001;47(6):533-542. doi:10.1016/S0022-1910(00)00153-0
23.
MacMillan HA, Findsen A, Pedersen TH, Overgaard J. Cold-Induced Depolarization of Insect Muscle: Differing Roles of Extracellular K  During Acute and Chronic Chilling. Journal of Experimental Biology. 2014;217(16):2930-2938. doi:10.1242/jeb.107516
24.
Ju RT, Xiao YY, Li B. Rapid Cold Hardening Increases Cold and Chilling Tolerances More Than Acclimation in the Adults of the Sycamore Lace Bug, Corythucha Ciliata (Say) (Hemiptera: Tingidae). Journal of Insect Physiology. 2011;57(11):1577-1582. doi:10.1016/j.jinsphys.2011.08.012
25.
Lee, RE. Insect Cold-Hardiness: To Freeze or Not to Freeze. BioScience. 1989;39(5):308-313. doi:10.2307/1311113
26.
Neven LG. Physiological Responses of Insects to Heat. Postharvest Biology and Technology. 2000;21(1):103-111. doi:10.1016/S0925-5214(00)00169-1
27.
Teets NM, Yi SX, Lee RE, Denlinger DL. Calcium Signaling Mediates Cold Sensing in Insect Tissues. Proceedings of the National Academy of Sciences. 2013;110(22):9154-9159. doi:10.1073/pnas.1306705110
28.
Gullan PJ, Cranston PS. Insect Predation and Parasitism. In: The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014.
29.
Gullan PJ, Cranston PS. Insect Predation and Parasitism. In: The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
30.
Skelhorn J, Rowland HM, Speed MP, Ruxton GD. Masquerade: Camouflage Without Crypsis. Science. 2007;327(5961):51-51. http://www.jstor.org/stable/40508288
31.
Church SC, BennettInnes ATD, Cuthill C, Hunt S, Hart NS, Partridge JC. Does Lepidopteran Larval Crypsis Extend into the Ultraviolet? Naturwissenschaften. 1998;85(4):189-192. doi:10.1007/s001140050483
32.
Harvey D, Gange A. Size Variation and Mating Success in the Stag Beetle, Lucanus Cervus. Physiological Entomology. 2006;31(3):218-226. doi:10.1111/j.1365-3032.2006.00509.x
33.
Howse PE. Lepidopteran Wing Patterns and the Evolution of Satyric Mimicry. Biological Journal of the Linnean Society. 2013;109(1):203-214. doi:10.1111/bij.12027
34.
McCullough EL, Emlen DJ. Evaluating the Costs of a Sexually Selected Weapon: Big Horns at a Small Price. Animal Behaviour. 2013;86(5):977-985. doi:10.1016/j.anbehav.2013.08.017
35.
Jones RT. Wing Shape Variation Associated With Mimicry In Butterflies. Evolution. 2013;67(8):2323-2334. doi:10.1111/evo.12114
36.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014.
37.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
38.
Hallem EA, Dahanukar A, Carlson JR. Insect Odor and Taste Receptors. Annual Review of Entomology. 2006;51(1):113-135. doi:10.1146/annurev.ento.51.051705.113646
39.
Hansson BS. A Bug’s Smell – Research Into Insect Olfaction. Trends in Neurosciences. 2002;25(5):270-274. doi:10.1016/S0166-2236(02)02140-9
40.
Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron. 2011;72(5):698-711. doi:10.1016/j.neuron.2011.11.003
41.
Siciliano P, Hea XL, Woodcocka C, et al. Identification of Pheromone Components and Their Binding Affinity to the Odorant Binding Protein CcapOBP83a-2 of the Mediterranean Fruit Fly, Ceratitis Capitata. Insect Biochemistry and Molecular Biology. 2014;48:51-62. doi:10.1016/j.ibmb.2014.02.005
42.
Gullan PJ, Cranston PS. Sensory Systems and Behaviour. In: The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014.
43.
Gullan PJ, Cranston PS. Sensory Systems and Behaviour. In: The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
44.
Klowden MJ. Communication Systems. In: Physiological Systems in Insects. Elsevier/AP; 2013:604-648.
45.
Klowden MJ. Communication Systems. In: Physiological Systems in Insects. Academic Press, an imprint of Elsevier; 2013:603-648. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1191551
46.
Cocroft RB, Rodriguez RL. The Behavioral Ecology of Insect Vibrational Communication. BioScience. 2005;55(4). doi:10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2
47.
Gullan PJ, Cranston PS. Internal Anatomy and Physiology. In: The Insects: An Outline of Entomology. 5th Edition. Wiley-Blackwell; 2014.
48.
Gullan PJ, Cranston PS. Internal Anatomy and Physiology. In: The Insects: An Outline of Entomology. 5th ed. John Wiley & Sons, Incorporated; 2014. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
49.
Douglas AE. Phloem-Sap Feeding by Animals: Problems and Solutions. Journal of Experimental Botany. 2006;57(4):747-754. doi:10.1093/jxb/erj067
50.
Kukor JJ. The Role of Ingested Fungal Enzymes in Cellulose Digestion in the Larvae of Cerambycid Beetles                  Original text. Physiological Zoology. 1988;61(4):364-371. http://www.jstor.org/stable/30161254
51.
MacMahon JA. Harvester Ants (Pogonomyrmex SPP.): Their Community and Ecosystem Influences                  Original text. Annual Review of Ecology and Systematics. 2000;31:265-291. http://www.jstor.org/stable/221733
52.
Sabree ZL. Nitrogen Recycling and Nutritional Provisioning by Blattabacterium, the Cockroach Endosymbiont                  Original text. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(46):19521-19526. http://www.jstor.org/stable/25593225
53.
Six DL. The Bark Beetle Holobiont: Why Microbes Matter. Journal of Chemical Ecology. 2013;39(7):989-1002. doi:10.1007/s10886-013-0318-8
54.
Jonsell M. Substrate Requirements of Red-Listed Saproxylic Invertebrates in Sweden. Biodiversity & Conservation. 1998;7(6):749-764. doi:10.1023/A:1008888319031
55.
Engel P, Moran NA. The Gut Microbiota of Insects – Diversity in Structure and Function. FEMS Microbiology Reviews. 2013;37(5):699-735. doi:10.1111/1574-6976.12025
56.
Harvey D, Gange A. The Stag Beetle: a Collaborative Conservation Study Across Europe. Insect Conservation and Diversity. 2011;4(1):2-3. doi:10.1111/j.1752-4598.2010.00125.x
57.
Harvey D, Gange AC, Hawes CJ, Rink M. Bionomics and Distribution of the Stag Beetle, Lucanus Cervus (L.) Across Europe. Insect Conservation and Diversity. 2011;4(1):23-38. doi:10.1111/j.1752-4598.2010.00107.x
58.
Harvey D, Hawes CJ, Gange AC, Finch P, Chesmore D, Farr I. Development of Non-Invasive Monitoring Methods for Larvae and Adults of the Stag Beetle, Lucanus Cervus. Insect Conservation and Diversity. 2011;4(1):4-14. doi:10.1111/j.1752-4598.2009.00072.x
59.
Larsson MC, Svensson GP. Pheromone Monitoring of Rare and Threatened Insects: Exploiting a Pheromone-Kairomone System to Estimate Prey and Predator Abundance                  Original text. Conservation Biology. 2009;23(6):1516-1525. http://www.jstor.org/stable/40419190
60.
Musa N, Andersson K, Burman J, et al. Using Sex Pheromone and a Multi-Scale Approach to Predict the Distribution of a Rare Saproxylic Beetle. PLoS ONE. 2013;8(6). doi:10.1371/journal.pone.0066149
61.
Svensson GP, Larsson MC. Enantiomeric Specificity in a Pheromone–Kairomone System of Two Threatened Saproxylic Beetles, Osmoderma Eremita and Elater Ferrugineus. Journal of Chemical Ecology. 2008;34(2):189-197. doi:10.1007/s10886-007-9423-x
62.
Tolasch T, von Fragstein M, Steidle JLM. Sex Pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). Journal of Chemical Ecology. 2007;33(11):2156-2166. doi:10.1007/s10886-007-9365-3
63.
Andersson K, Bergman KO, Andersson F, et al. High-Accuracy Sampling of Saproxylic Diversity Indicators at Regional Scales With Pheromones: The Case of Elater Ferrugineus (Coleoptera, Elateridae). Biological Conservation. 2014;171:156-166. doi:10.1016/j.biocon.2014.01.007
64.
Ugelvig LV, Cremer S. Effects of Social Immunity and Unicoloniality on Host-Parasite Interactions in Invasive Insect Societies. Functional Ecology. 2012;26(6):1300-1312. doi:10.1111/1365-2435.12013
65.
Moritz RFA, Härtel S, Neumann P. Global Invasions of the Western Honeybee (Apis Mellifera) and the Consequences for Biodiversity. Écoscience. 2005;12(3):289-301. doi:10.2980/i1195-6860-12-3-289.1
66.
Manfredi F, Grozinger CM, Beani L. Examining the "Evolution of Increased Competitive Ability” Hypothesis in Response to Parasites and Pathogens in the Invasive Paper Wasp Polistes Dominula. Naturwissenschaften. 2013;100(3):219-228. doi:10.1007/s00114-013-1014-9
67.
Ascunce MS, Yang CC, Oakey J, et al. Global Invasion History of the Fire Ant Solenopsis Invicta. Science. 2011;331(6020):1066-1068. http://www.jstor.org/stable/41075761
68.
Saikkonen K, Saari S, Helander M. Defensive Mutualism Between Plants and Endophytic Fungi? Fungal Diversity. 2010;41(1):101-113. doi:10.1007/s13225-010-0023-7
69.
Wearn JA, Sutton BC, Morley NJ, Gange AC. Species and Organ Specificity of Fungal Endophytes in Herbaceous Grassland Plants. Journal of Ecology. 2012;100(5):1085-1092. https://www.jstor.org/stable/23257530
70.
Yan JF, Broughton SJ, Yang SL, Gange AC. Do Endophytic Fungi Grow Through Their Hosts Systemically? Fungal Ecology. 2015;13:53-59. doi:10.1016/j.funeco.2014.07.005
71.
Faeth SH. Are Endophytic Fungi Defensive Plant Mutualists? Oikos. 2002;98(1):25-36. https://www.jstor.org/stable/3547609
72.
Gange AC, Eschen R, Wearn JA, Thawer A, Sutton BC. Differential Effects of Foliar Endophytic Fungi on Insect Herbivores Attacking a Herbaceous Plant. Oecologia. 2012;168(4). https://www.jstor.org/stable/41487340
73.
Barto EK, Rillig MC. Does Herbivory Really Suppress Mycorrhiza? a Meta-Analysis. Journal of Ecology. 2010;98(4):745-753. https://www.jstor.org/stable/40732002
74.
Gange AC, West HM. Interactions between Arbuscular Mycorrhizal Fungi and Foliar-Feeding Insects in Plantago lanceolata L. The New Phytologist. 1994;128(1):79-87. https://www.jstor.org/stable/2557834
75.
Gange AC, Smith AK. Arbuscular Mycorrhizal Fungi Influence Visitation Rates of Pollinating Insects. Ecological Entomology. 2005;30(5):600-606. doi:10.1111/j.0307-6946.2005.00732.x
76.
Koricheva J, Gange AC, Jones T. Effects of Mycorrhizal Fungi on Insect Herbivores: A Meta-Analysis. Ecology. 2009;90(8):2088-2097. https://www.jstor.org/stable/25592725
77.
Gange AC, Brown VK, Aplin DM. Multitrophic Links Between Arbuscular Mycorrhizal Fungi and Insect Parasitoids. Ecology Letters. 2003;6(12):1051-1055. doi:10.1046/j.1461-0248.2003.00540.x
78.
Simon AL, Wellham PAD, Aradottir GI, Gange AC. Unravelling Mycorrhiza-Induced Wheat Susceptibility to the English Grain Aphid Sitobion Avenae. Scientific Reports. 2017;7(1). doi:10.1038/srep46497
79.
Ehrlich PR, Raven PH. Butterflies and Plants: A Study in Coevolution. Evolution. 1964;18(4):586-608. doi:10.2307/2406212
80.
Farrell BD. ‘Inordinate Fondness’ Explained: Why are There so Many Beetles?                  Original text. Science. 1998;281(5376):555-559. http://www.jstor.org/stable/2895081
81.
Becerra JX. Insects on Plants: Macroevolutionary Chemical Trends in Host Use                  Original text. Science. 1997;276(5310):253-256. http://www.jstor.org/stable/2892759
82.
Becerra JX. Synchronous Coadaptation in an Ancient Case of Herbivory. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(22):12804-12807. http://www.jstor.org/stable/3148041
83.
Becerra JX. Macroevolutionary Chemical Escalation in an Ancient Plant-Herbivore Arms Race                  Original text. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(43):18062-18066. http://www.jstor.org/stable/25592961
84.
Agrawal AA. Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science. 2012;338(6103):113-116. doi:10.1126/science.1225977
85.
Zust T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA. Natural Enemies Drive Geographic Variation in Plant Defenses. Science. 2012;338(6103):116-119. doi:10.1126/science.1226397
86.
Wise MJ, Rausher MD. Evolution of Resistance to a Multiple-Herbivore Community: Genetic Correlations, Diffuse Coevolution, and Constraints on the Plant’s Response to Selection. Evolution. 2013;67(6):1767-1779. doi:10.1111/evo.12061
87.
Castagneyrol B, Giffard B, Péré C, Jactel H. Plant Apparency, an Overlooked Driver of Associational Resistance to Insect Herbivory. Journal of Ecology. 2013;101(2):418-429. doi:10.1111/1365-2745.12055
88.
Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors                  Original text. Annual Review of Ecology, Evolution, and Systematics. 2009;40:1-20. http://www.jstor.org/stable/20744029
89.
Castagneyrol B, Jactel H, Vacher C, Brockerhoff EG, Koricheva J. Effects of Plant Phylogenetic Diversity on Herbivory Depend on Herbivore Specialization. Journal of Applied Ecology. 2014;51(1):134-141. doi:10.1111/1365-2664.12175
90.
Tooker JF, Frank SD. Genotypically Diverse Cultivar Mixtures for Insect Pest Management and Increased Crop Yields. Journal of Applied Ecology. 2012;49(5):974-985. doi:10.1111/j.1365-2664.2012.02173.x
91.
Letourneau DK, Armbrecht I, Riviera BS, et al. Does Plant Diversity Benefit Agroecosystems? A Synthetic Review. Ecological Applications. 2011;21(1):9-21. http://www.jstor.org/stable/29779633
92.
White JA, Whitham TG. Associational Susceptibility of Cottonwood to a Box Elder Herbivore. Ecology. 2000;81(7):1795-1803. doi:10.2307/177271
93.
Kaitaniemi P, Riihimäki J, Koricheva J, Vehviläinen H. Experimental Evidence for Associational Resistance Against the European Pine Sawfly in Mixed Tree Stands. Silva Fennica. 2007;41(2):259-268. https://silvafennica.fi/pdf/article295.pdf
94.
Bass C, Puinean AM, Zimmer CT, et al. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology. 2014;51:41-51. doi:10.1016/j.ibmb.2014.05.003
95.
Bass C, Puinean AM, Zimmer CT, et al. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology. 2014;51:41-51. doi:10.1016/j.ibmb.2014.05.003
96.
Shaw RH, Tanner R, Djeddour D, Cortat G. Classical Biological Control of Fallopia Japonica in the United Kingdom - Lessons for Europe. Weed Research. 2011;51(6):552-558. doi:10.1111/j.1365-3180.2011.00880.x
97.
Williams F, Eschen R, Harris A, et al. The Economic Cost of Invasive Non-Native Species on Great Britain. 2010;CAB/001/09. http://www.nonnativespecies.org/downloadDocument.cfm?id=487
98.
Sheppard AW, Shaw RH, Sforza R. Top 20 Environmental Weeds for Classical Biological Control in Europe: A Review of Opportunities, Regulations and Other Barriers to Adoption. Weed Research. 2006;46(2):93-117. doi:10.1111/j.1365-3180.2006.00497.x
99.
Culliney TW. Benefits of Classical Biological Control for Managing Invasive Plants. Critical Reviews in Plant Sciences. 2005;24(2):131-150. doi:10.1080/07352680590961649
100.
Mcfadyen REC. Successes in Biological Control of Weeds. Spencer NR, ed. Proceedings of the X International Symposium on Biological Control of Weeds. Published online 1999:3-14. https://www.invasive.org/publications/xsymposium/proceed/01apg03.pdf
101.
Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW. Trends in the Classical Biological Control of Insect Pests by Insects: An Update of the Biocat Database. BioControl. 2016;61(4):349-363. doi:10.1007/s10526-016-9726-3
102.
Murphy ST, LaSalle J. Balancing Biological Control Strategies in the IPM of New World Invasive Liriomyza Leafminers in Field Vegetable Crops. Biocontrol News and Information. 1999;20(3):91N-104N. http://cabweb.org/PDF/BNI/Control/bnira50.pdf
103.
Messing R, Brodeur J. Current Challenges to the Implementation of Classical Biological Control. BioControl. 2018;63(1):1-9. doi:10.1007/s10526-017-9862-4
104.
Shaw RH, Ellison CA, Marchante H, et al. Weed Biological Control in the European Union: From Serendipity to Strategy. BioControl. 2018;63(3):333-347. doi:10.1007/s10526-017-9844-6
105.
Schwarzländer M, Hinz HL, Winston RL, Day MD. Biological Control of Weeds: An Analysis of Introductions, Rates of Establishment and Estimates of Success, Worldwide. BioControl. 2018;63(3):319-331. doi:10.1007/s10526-018-9890-8