1.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014.
2.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
3.
Chapman RF. The Insects: Structure and Function. 5th Edition. Simpson SJ, Douglas AE, editors. Cambridge: Cambridge University Press; 2013.
4.
Klowden MJ, Klowden MJ. Physiological Systems in Insects. Amsterdam: Elsevier/AP; 2013.
5.
Klowden MJ. Physiological Systems in Insects [Internet]. London: Academic Press, an imprint of Elsevier; 2013. Available from: https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=1191551
6.
Engel MS. Insect Evolution. Current Biology. 2015;25(19):R868–R872.
7.
Scudder GGE. The Importance of Insects. Insect Biodiversity: Science and Society [Internet]. Chichester: Wiley-Blackwell; 2009. p. 7–32. Available from: https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=428298
8.
Gullan PJ, Cranston PS. Reproduction. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014. p. 125–156.
9.
Gullan PJ, Cranston PS. Reproduction. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. p. 125–155. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470
10.
Alonzo SH, Pizzari T. Selection on Female Remating Interval Is Influenced by Male Sperm Competition Strategies and Ejaculate Characteristics. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(1613):20120044–20120044.
11.
Bonduriansky R. The Evolution of Male Mate Choice in Insects: A Synthesis of Ideas and Evidence. Biological Reviews of the Cambridge Philosophical Society. 2001;76(3):305–339.
12.
Burgevin L, Friberg U, Maklakova AA. Intersexual Correlation for Same-Sex Sexual Behaviour in an Insect. Animal Behaviour. 2013;85(4):759–762.
13.
Johnstone RA, Keller L. How Males Can Gain by Harming Their Mates: Sexual Conflict, Seminal Toxins, and the Cost of Mating. The American Naturalist. 2000;156(4):368–377.
14.
Michalczyk Ł, Millard AL, Martin OY, Lumley AJ, Emerson BC, Chapman T, Gage MJG. Inbreeding Promotes Female Promiscuity. Science. 2011;333(6050):1739–1742.
15.
Edvardsson M. Why Do Male Callosobruchus Maculatus Harm Their Mates? Behavioral Ecology. 2005;16(4):788–793.
16.
Lihoreau M, Zimmer C, Rivault C. Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding. PLoS ONE. 2008;3(10).
17.
Perry JC, Sirot L, Wigby S. The Seminal Symphony: How to Compose an Ejaculate. Trends in Ecology & Evolution. 2013;28(7):414–422.
18.
Simmons LW, Tan YF, Millar AH. Sperm and Seminal Fluid Proteomes of the Field Cricket Teleogryllus Oceanicus: Identification of Novel Proteins Transferred to Females at Mating. Insect Molecular Biology. 2013;22(1):115–130.
19.
Gullan PJ, Cranston PS. Insect Development and Life Histories. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014.
20.
Gullan PJ, Cranston PS. Insect Development and Life Histories. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
21.
Bale JS. Classes of Insect Cold Hardiness. Functional Ecology [Internet]. British Ecological Society; 1993;7(6):751–753. Available from: https://www.jstor.org/stable/2390198
22.
Hoback WW, Stanley DW. Insects in Hypoxia. Journal of Insect Physiology. 2001;47(6):533–542.
23.
MacMillan HA, Findsen A, Pedersen TH, Overgaard J. Cold-Induced Depolarization of Insect Muscle: Differing Roles of Extracellular K  During Acute and Chronic Chilling. Journal of Experimental Biology [Internet]. The Company of Biologists Ltd; 2014;217(16):2930–2938. Available from: http://jeb.biologists.org/content/217/16/2930
24.
Ju RT, Xiao YY, Li B. Rapid Cold Hardening Increases Cold and Chilling Tolerances More Than Acclimation in the Adults of the Sycamore Lace Bug, Corythucha Ciliata (Say) (Hemiptera: Tingidae). Journal of Insect Physiology. 2011;57(11):1577–1582.
25.
Lee, RE. Insect Cold-Hardiness: To Freeze or Not to Freeze. BioScience. 1989;39(5):308–313.
26.
Neven LG. Physiological Responses of Insects to Heat. Postharvest Biology and Technology. 2000;21(1):103–111.
27.
Teets NM, Yi SX, Lee RE, Denlinger DL. Calcium Signaling Mediates Cold Sensing in Insect Tissues. Proceedings of the National Academy of Sciences. 2013;110(22):9154–9159.
28.
Gullan PJ, Cranston PS. Insect Predation and Parasitism. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014.
29.
Gullan PJ, Cranston PS. Insect Predation and Parasitism. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
30.
Skelhorn J, Rowland HM, Speed MP, Ruxton GD. Masquerade: Camouflage Without Crypsis. Science [Internet]. American Association for the Advancement of ScienceAmerican Association for the Advancement of Science; 2007;327(5961):51–51. Available from: http://www.jstor.org/stable/40508288
31.
Church SC, BennettInnes ATD, Cuthill C, Hunt S, Hart NS, Partridge JC. Does Lepidopteran Larval Crypsis Extend into the Ultraviolet? Naturwissenschaften. 1998;85(4):189–192.
32.
Harvey D, Gange A. Size Variation and Mating Success in the Stag Beetle, Lucanus Cervus. Physiological Entomology. 2006;31(3):218–226.
33.
Howse PE. Lepidopteran Wing Patterns and the Evolution of Satyric Mimicry. Biological Journal of the Linnean Society. 2013;109(1):203–214.
34.
McCullough EL, Emlen DJ. Evaluating the Costs of a Sexually Selected Weapon: Big Horns at a Small Price. Animal Behaviour. 2013;86(5):977–985.
35.
Jones RT. Wing Shape Variation Associated With Mimicry In Butterflies. Evolution. 2013;67(8):2323–2334.
36.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014.
37.
Gullan PJ, Cranston PS. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
38.
Hallem EA, Dahanukar A, Carlson JR. Insect Odor and Taste Receptors. Annual Review of Entomology. 2006;51(1):113–135.
39.
Hansson BS. A Bug’s Smell – Research Into Insect Olfaction. Trends in Neurosciences. 2002;25(5):270–274.
40.
Hansson BS, Stensmyr MC. Evolution of Insect Olfaction. Neuron. 2011;72(5):698–711.
41.
Siciliano P, Hea XL, Woodcocka C, Picketta JA, Fielda LM, Birketta MA, Kalinovac B, Gomulskib LM, Scolarib F, Gasperib G, Malacridab AR, Zhoua JJ. Identification of Pheromone Components and Their Binding Affinity to the Odorant Binding Protein CcapOBP83a-2 of the Mediterranean Fruit Fly, Ceratitis Capitata. Insect Biochemistry and Molecular Biology. 2014;48:51–62.
42.
Gullan PJ, Cranston PS. Sensory Systems and Behaviour. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014.
43.
Gullan PJ, Cranston PS. Sensory Systems and Behaviour. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
44.
Klowden MJ. Communication Systems. Physiological Systems in Insects. Amsterdam: Elsevier/AP; 2013. p. 604–648.
45.
Klowden MJ. Communication Systems. Physiological Systems in Insects [Internet]. London: Academic Press, an imprint of Elsevier; 2013. p. 603–648. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1191551
46.
Cocroft RB, Rodriguez RL. The Behavioral Ecology of Insect Vibrational Communication. BioScience. 2005;55(4).
47.
Gullan PJ, Cranston PS. Internal Anatomy and Physiology. The Insects: An Outline of Entomology. 5th Edition. Chichester, West Sussex: Wiley-Blackwell; 2014.
48.
Gullan PJ, Cranston PS. Internal Anatomy and Physiology. The Insects: An Outline of Entomology [Internet]. 5th ed. John Wiley & Sons, Incorporated; 2014. Available from: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=1775470&query=The Insects: An Outline of Entomology
49.
Douglas AE. Phloem-Sap Feeding by Animals: Problems and Solutions. Journal of Experimental Botany. 2006;57(4):747–754.
50.
Kukor JJ. The Role of Ingested Fungal Enzymes in Cellulose Digestion in the Larvae of Cerambycid Beetles                  Original text. Physiological Zoology [Internet]. The University of Chicago PressDivision of Comparative Physiology and Biochemistry, Society for Integrative and Comparative BiologyThe University of Chicago Press; 1988;61(4):364–371. Available from: http://www.jstor.org/stable/30161254
51.
MacMahon JA. Harvester Ants (Pogonomyrmex SPP.): Their Community and Ecosystem Influences                  Original text. Annual Review of Ecology and Systematics [Internet]. Annual ReviewsAnnual Reviews; 2000;31:265–291. Available from: http://www.jstor.org/stable/221733
52.
Sabree ZL. Nitrogen Recycling and Nutritional Provisioning by Blattabacterium, the Cockroach Endosymbiont                  Original text. Proceedings of the National Academy of Sciences of the United States of America [Internet]. National Academy of SciencesNational Academy of Sciences; 2009;106(46):19521–19526. Available from: http://www.jstor.org/stable/25593225
53.
Six DL. The Bark Beetle Holobiont: Why Microbes Matter. Journal of Chemical Ecology. 2013;39(7):989–1002.
54.
Jonsell M. Substrate Requirements of Red-Listed Saproxylic Invertebrates in Sweden. Biodiversity & Conservation. 1998;7(6):749–764.
55.
Engel P, Moran NA. The Gut Microbiota of Insects – Diversity in Structure and Function. FEMS Microbiology Reviews. 2013;37(5):699–735.
56.
Harvey D, Gange A. The Stag Beetle: a Collaborative Conservation Study Across Europe. Insect Conservation and Diversity. 2011;4(1):2–3.
57.
Harvey D, Gange AC, Hawes CJ, Rink M. Bionomics and Distribution of the Stag Beetle, Lucanus Cervus (L.) Across Europe. Insect Conservation and Diversity. 2011;4(1):23–38.
58.
Harvey D, Hawes CJ, Gange AC, Finch P, Chesmore D, Farr I. Development of Non-Invasive Monitoring Methods for Larvae and Adults of the Stag Beetle, Lucanus Cervus. Insect Conservation and Diversity. 2011;4(1):4–14.
59.
Larsson MC, Svensson GP. Pheromone Monitoring of Rare and Threatened Insects: Exploiting a Pheromone-Kairomone System to Estimate Prey and Predator Abundance                  Original text. Conservation Biology [Internet]. WileySociety for Conservation BiologyWiley; 2009;23(6):1516–1525. Available from: http://www.jstor.org/stable/40419190
60.
Musa N, Andersson K, Burman J, Andersson F, Hedenström E, Jansson N, Paltto H, Westerberg L, Winde I, Larsson MC, Bergman KO, Milberg P. Using Sex Pheromone and a Multi-Scale Approach to Predict the Distribution of a Rare Saproxylic Beetle. PLoS ONE. 2013;8(6).
61.
Svensson GP, Larsson MC. Enantiomeric Specificity in a Pheromone–Kairomone System of Two Threatened Saproxylic Beetles, Osmoderma Eremita and Elater Ferrugineus. Journal of Chemical Ecology. 2008;34(2):189–197.
62.
Tolasch T, von Fragstein M, Steidle JLM. Sex Pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). Journal of Chemical Ecology. 2007;33(11):2156–2166.
63.
Andersson K, Bergman KO, Andersson F, Hedenström E, Jansson N, Burman J, Winde I, Larsson MC, Milberg P. High-Accuracy Sampling of Saproxylic Diversity Indicators at Regional Scales With Pheromones: The Case of Elater Ferrugineus (Coleoptera, Elateridae). Biological Conservation. 2014;171:156–166.
64.
Ugelvig LV, Cremer S. Effects of Social Immunity and Unicoloniality on Host-Parasite Interactions in Invasive Insect Societies. Functional Ecology. 2012;26(6):1300–1312.
65.
Moritz RFA, Härtel S, Neumann P. Global Invasions of the Western Honeybee (Apis Mellifera) and the Consequences for Biodiversity. Écoscience. 2005;12(3):289–301.
66.
Manfredi F, Grozinger CM, Beani L. Examining the "Evolution of Increased Competitive Ability” Hypothesis in Response to Parasites and Pathogens in the Invasive Paper Wasp Polistes Dominula. Naturwissenschaften. 2013;100(3):219–228.
67.
Ascunce MS, Yang CC, Oakey J, Calcaterra L, Wu WJ, Shih CJ, Goudet J, Ross KG, Shoemaker D. Global Invasion History of the Fire Ant Solenopsis Invicta. Science [Internet]. American Association for the Advancement of ScienceAmerican Association for the Advancement of Science; 2011;331(6020):1066–1068. Available from: http://www.jstor.org/stable/41075761
68.
Saikkonen K, Saari S, Helander M. Defensive Mutualism Between Plants and Endophytic Fungi? Fungal Diversity. 2010;41(1):101–113.
69.
Wearn JA, Sutton BC, Morley NJ, Gange AC. Species and Organ Specificity of Fungal Endophytes in Herbaceous Grassland Plants. Journal of Ecology [Internet]. British Ecological Society; 2012;100(5):1085–1092. Available from: https://www.jstor.org/stable/23257530
70.
Yan JF, Broughton SJ, Yang SL, Gange AC. Do Endophytic Fungi Grow Through Their Hosts Systemically? Fungal Ecology. 2015;13:53–59.
71.
Faeth SH. Are Endophytic Fungi Defensive Plant Mutualists? Oikos [Internet]. Wiley; 2002;98(1):25–36. Available from: https://www.jstor.org/stable/3547609
72.
Gange AC, Eschen R, Wearn JA, Thawer A, Sutton BC. Differential Effects of Foliar Endophytic Fungi on Insect Herbivores Attacking a Herbaceous Plant. Oecologia [Internet]. Springer; 2012;168(4). Available from: https://www.jstor.org/stable/41487340
73.
Barto EK, Rillig MC. Does Herbivory Really Suppress Mycorrhiza? a Meta-Analysis. Journal of Ecology [Internet]. British Ecological Society; 2010;98(4):745–753. Available from: https://www.jstor.org/stable/40732002
74.
Gange AC, West HM. Interactions between Arbuscular Mycorrhizal Fungi and Foliar-Feeding Insects in Plantago lanceolata L. The New Phytologist [Internet]. Wiley; 1994;128(1):79–87. Available from: https://www.jstor.org/stable/2557834
75.
Gange AC, Smith AK. Arbuscular Mycorrhizal Fungi Influence Visitation Rates of Pollinating Insects. Ecological Entomology. 2005;30(5):600–606.
76.
Koricheva J, Gange AC, Jones T. Effects of Mycorrhizal Fungi on Insect Herbivores: A Meta-Analysis. Ecology [Internet]. Wiley; 2009;90(8):2088–2097. Available from: https://www.jstor.org/stable/25592725
77.
Gange AC, Brown VK, Aplin DM. Multitrophic Links Between Arbuscular Mycorrhizal Fungi and Insect Parasitoids. Ecology Letters. 2003;6(12):1051–1055.
78.
Simon AL, Wellham PAD, Aradottir GI, Gange AC. Unravelling Mycorrhiza-Induced Wheat Susceptibility to the English Grain Aphid Sitobion Avenae. Scientific Reports. 2017;7(1).
79.
Ehrlich PR, Raven PH. Butterflies and Plants: A Study in Coevolution. Evolution. 1964;18(4):586–608.
80.
Farrell BD. ‘Inordinate Fondness’ Explained: Why are There so Many Beetles?                  Original text. Science [Internet]. American Association for the Advancement of ScienceAmerican Association for the Advancement of Science; 1998;281(5376):555–559. Available from: http://www.jstor.org/stable/2895081
81.
Becerra JX. Insects on Plants: Macroevolutionary Chemical Trends in Host Use                  Original text. Science [Internet]. American Association for the Advancement of ScienceAmerican Association for the Advancement of Science; 1997;276(5310):253–256. Available from: http://www.jstor.org/stable/2892759
82.
Becerra JX. Synchronous Coadaptation in an Ancient Case of Herbivory. Proceedings of the National Academy of Sciences of the United States of America [Internet]. National Academy of SciencesNational Academy of Sciences; 2003;100(22):12804–12807. Available from: http://www.jstor.org/stable/3148041
83.
Becerra JX. Macroevolutionary Chemical Escalation in an Ancient Plant-Herbivore Arms Race                  Original text. Proceedings of the National Academy of Sciences of the United States of America [Internet]. National Academy of SciencesNational Academy of Sciences; 2009;106(43):18062–18066. Available from: http://www.jstor.org/stable/25592961
84.
Agrawal AA. Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science. 2012;338(6103):113–116.
85.
Zust T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA. Natural Enemies Drive Geographic Variation in Plant Defenses. Science. 2012;338(6103):116–119.
86.
Wise MJ, Rausher MD. Evolution of Resistance to a Multiple-Herbivore Community: Genetic Correlations, Diffuse Coevolution, and Constraints on the Plant’s Response to Selection. Evolution. 2013;67(6):1767–1779.
87.
Castagneyrol B, Giffard B, Péré C, Jactel H. Plant Apparency, an Overlooked Driver of Associational Resistance to Insect Herbivory. Journal of Ecology. 2013;101(2):418–429.
88.
Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors                  Original text. Annual Review of Ecology, Evolution, and Systematics [Internet]. Annual ReviewsAnnual Reviews; 2009;40:1–20. Available from: http://www.jstor.org/stable/20744029
89.
Castagneyrol B, Jactel H, Vacher C, Brockerhoff EG, Koricheva J. Effects of Plant Phylogenetic Diversity on Herbivory Depend on Herbivore Specialization. Journal of Applied Ecology. 2014;51(1):134–141.
90.
Tooker JF, Frank SD. Genotypically Diverse Cultivar Mixtures for Insect Pest Management and Increased Crop Yields. Journal of Applied Ecology. 2012;49(5):974–985.
91.
Letourneau DK, Armbrecht I, Riviera BS, Lerma JM, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutiérrez C, López SD, Mejía JL, Rangel AMA, Rangel JH, Rivera L, Saavedra CA, Torres AM, Trujillo AR. Does Plant Diversity Benefit Agroecosystems? A Synthetic Review. Ecological Applications [Internet]. WileyWiley; 2011;21(1):9–21. Available from: http://www.jstor.org/stable/29779633
92.
White JA, Whitham TG. Associational Susceptibility of Cottonwood to a Box Elder Herbivore. Ecology. 2000;81(7):1795–1803.
93.
Kaitaniemi P, Riihimäki J, Koricheva J, Vehviläinen H. Experimental Evidence for Associational Resistance Against the European Pine Sawfly in Mixed Tree Stands. Silva Fennica [Internet]. Finnish Society of Forest Science; 2007;41(2):259–268. Available from: https://silvafennica.fi/pdf/article295.pdf
94.
Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology. 2014;51:41–51.
95.
Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus Persicae. Insect Biochemistry and Molecular Biology. 2014;51:41–51.
96.
Shaw RH, Tanner R, Djeddour D, Cortat G. Classical Biological Control of Fallopia Japonica in the United Kingdom - Lessons for Europe. Weed Research. 2011;51(6):552–558.
97.
Williams F, Eschen R, Harris A, Djeddour D, Pratt C, Shaw RS, Varia S, Lamontagne-Godwin J, Thomas SE, Murphy ST. The Economic Cost of Invasive Non-Native Species on Great Britain [Internet]. www.cabi.org; 2010. Available from: http://www.nonnativespecies.org/downloadDocument.cfm?id=487
98.
Sheppard AW, Shaw RH, Sforza R. Top 20 Environmental Weeds for Classical Biological Control in Europe: A Review of Opportunities, Regulations and Other Barriers to Adoption. Weed Research. 2006;46(2):93–117.
99.
Culliney TW. Benefits of Classical Biological Control for Managing Invasive Plants. Critical Reviews in Plant Sciences. 2005;24(2):131–150.
100.
Mcfadyen REC. Successes in Biological Control of Weeds. Spencer NR, editor. Proceedings of the X International Symposium on Biological Control of Weeds [Internet]. Bozeman, Montana, USA: Montana State University; 1999;3–14. Available from: https://www.invasive.org/publications/xsymposium/proceed/01apg03.pdf
101.
Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW. Trends in the Classical Biological Control of Insect Pests by Insects: An Update of the Biocat Database. BioControl. 2016;61(4):349–363.
102.
Murphy ST, LaSalle J. Balancing Biological Control Strategies in the IPM of New World Invasive Liriomyza Leafminers in Field Vegetable Crops. Biocontrol News and Information [Internet]. 1999;20(3):91N-104N. Available from: http://cabweb.org/PDF/BNI/Control/bnira50.pdf
103.
Messing R, Brodeur J. Current Challenges to the Implementation of Classical Biological Control. BioControl. 2018;63(1):1–9.
104.
Shaw RH, Ellison CA, Marchante H, Pratt CF, Schaffner U, Sforza RFH, Deltoro V. Weed Biological Control in the European Union: From Serendipity to Strategy. BioControl. 2018;63(3):333–347.
105.
Schwarzländer M, Hinz HL, Winston RL, Day MD. Biological Control of Weeds: An Analysis of Introductions, Rates of Establishment and Estimates of Success, Worldwide. BioControl. 2018;63(3):319–331.