1.
Passingham, R.E., Wise, S.P.: The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford University Press, Oxford, United Kingdom (2012).
2.
Passingham, R.E., Wise, S.P.: The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford University Press, Oxford (2012).
3.
Fuster, J.M.: Prefrontal Neurons in Networks of Executive Memory. Brain Research Bulletin. 52, 331–336 (2000). https://doi.org/10.1016/S0361-9230(99)00258-0.
4.
Fuster, J.M.: The Prefrontal Cortex - An Update: Time Is of the Essence. Neuron. 30, 319–333 (2001). https://doi.org/10.1016/S0896-6273(01)00285-9.
5.
Fuster, J.M.: Upper Processing Stages of the Perception–action Cycle. Trends in Cognitive Sciences. 8, 143–145 (2004). https://doi.org/10.1016/j.tics.2004.02.004.
6.
Koechlin, E., Ody, C., Kouneiher, F.: The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science. 302, 1181–1185 (2003).
7.
Koechlin, E., Summerfield, C.: An Information Theoretical Approach to Prefrontal Executive Function. Trends in Cognitive Sciences. 11, 229–235 (2007). https://doi.org/10.1016/j.tics.2007.04.005.
8.
Ramnani, N., Owen, A.M.: Anterior Prefrontal Cortex: Insights Into Function From Anatomy and Neuroimaging. Nature Reviews Neuroscience. 5, 184–194 (2004). https://doi.org/10.1038/nrn1343.
9.
Constantinidis, C.: Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex. Journal of Neuroscience. 21, 3646–3655 (2001).
10.
Leon, M.I., Shadlen, M.N.: Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque. Neuron. 24, 415–425 (1999). https://doi.org/10.1016/S0896-6273(00)80854-5.
11.
Quintana, J.: From Perception to Action: Temporal Integrative Functions of Prefrontal and Parietal Neurons. Cerebral Cortex. 9, 213–221 (1999). https://doi.org/10.1093/cercor/9.3.213.
12.
Sakai, K., Rowe, J.B., Passingham, R.E.: Active Maintenance in Prefrontal Area 46 Creates Distractor-Resistant Memory. Nature Neuroscience. 5, 479–484 (2002). https://doi.org/10.1038/nn846.
13.
Rowe, J.B., Toni, I., Josephs, O., Frackowiak, R.S.J., Passingham, R.E.: The Prefrontal Cortex: Response Selection or Maintenance Within Working Memory? Science. 288, 1656–1660 (2000).
14.
Ramnani, N., Passingham, R.E.: Changes in the Human Brain During Rhythm Learning. Journal of Cognitive Neuroscience. 13, 952–966 (2001). https://doi.org/10.1162/089892901753165863.
15.
Passingham, R.E., Weinberger, D., Petrides, M.: Attention to Action. Philosophical Transactions: Biological Sciences. 351, 1473–1479 (1996).
16.
Jueptner, M.: Anatomy of Motor Learning. I. Frontal Cortex and Attention to Action. Journal of Neurophysiology. 77, 1313–1324 (1997).
17.
Shallice, T., Burgess, P., Robertson, I.: The Domain of Supervisory Processes and Temporal Organization of Behaviour [And Discussion]. Philosophical Transactions: Biological Sciences. 351, 1405–1412 (1996).
18.
Miller, E.K.: The Prefrontal Cortex and Cognitive Control. Nature Reviews Neuroscience. 1, 59–65 (2000). https://doi.org/10.1038/35036228.
19.
Miller, E.K., Freedman, D.J., Wallis, J.D.: The Prefrontal Cortex: Categories, Concepts and Cognition. Philosophical Transactions: Biological Sciences. 357, 1123–1136 (2002).
20.
Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science. 291, 312–316 (2001).
21.
Arai, Y.: Spatial Orientation of Caloric Nystagmus in Semicircular Canal-Plugged Monkeys. Journal of Neurophysiology. 88, 914–928 (2002).
22.
Freedman, D.J.: A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization. Journal of Neuroscience. 23, 5235–5246 (2003).
23.
Williams, C.: The Secret of You. New Scientist. 239, 36–39 (2018). https://doi.org/10.1016/S0262-4079(18)31211-9.
24.
Ramnani, N.: The Primate Cortico-Cerebellar System: Anatomy and Function. Nature Reviews Neuroscience. 7, 511–522 (2006). https://doi.org/10.1038/nrn1953.
25.
Ramnani, N.: Cerebellar Learning. Elsevier Science & Technology, Oxford (2014).
26.
Ramnani, N.: Automatic and Controlled Processing in the Corticocerebellar System. In: Ramnani, N. (ed.) Cerebellar learning. pp. 255–285. Elsevier, Amsterdam (2014). https://doi.org/10.1016/B978-0-444-63356-9.00010-8.
27.
Strick, P.L., Dum, R.P., Fiez, J.A.: Cerebellum and Nonmotor Function. Annual Review of Neuroscience. 32, 413–434 (2009). https://doi.org/10.1146/annurev.neuro.31.060407.125606.
28.
Strick, P.L., Dum, R.P., Fiez, J.A.: Cerebellum and Nonmotor Function. Annual Review of Neuroscience. 32, 413–434 (2009). https://doi.org/10.1146/annurev.neuro.31.060407.125606.
29.
Leiner, H.C., Leiner, A.L., Dow, R.S.: Cognitive and Language Functions of the Human Cerebellum. Trends in Neurosciences. 16, 444–447 (1993). https://doi.org/10.1016/0166-2236(93)90072-T.
30.
The Cerebellum: Connections, Computations and Cognition. Trends in Cognitive Sciences. 2, (1998).
31.
Kelly, R.M., Strick, P.L.: Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. The Journal of Neuroscience. 23, 8432–8444 (2003). https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003.
32.
Middleton, F.A., Strick, P.L.: Dentate Output Channels: Motor and Cognitive Components. The Cerebellum: From Structure to Control. Progress in Brain Research 114, 553–566 (1997). https://doi.org/10.1016/S0079-6123(08)63386-5.
33.
Middleton, F.A., Strick, P.L.: Anatomical Evidence for Cerebellar and Basal Ganglia Involvement in Higher Cognitive Function. Science. 266, 458–461 (1994).
34.
Hayter, A.L., Langdon, D.W., Ramnani, N.: Cerebellar Contributions to Working Memory. NeuroImage. 36, 943–954 (2007). https://doi.org/10.1016/j.neuroimage.2007.03.011.
35.
Balsters, J.H., Cussans, E., Diedrichsen, J., Phillips, K.A., Preuss, T.M., Rilling, J.K., Ramnani, N.: Evolution of the Cerebellar Cortex: The Selective Expansion of Prefrontal-Projecting Cerebellar Lobules. NeuroImage. 49, 2045–2052 (2010). https://doi.org/10.1016/j.neuroimage.2009.10.045.
36.
Balsters, J.H., Ramnani, N.: Symbolic Representations of Action in the Human Cerebellum. NeuroImage. 43, 388–398 (2008). https://doi.org/10.1016/j.neuroimage.2008.07.010.
37.
Balsters, J.H.: Cerebellar Plasticity and the Automation of First-Order Rules. Journal of Neuroscience. 31, 2305–2312 (2011).
38.
Ramnani, N.: The Evolution of Prefrontal Inputs to the Cortico-pontine System: Diffusion Imaging Evidence from Macaque Monkeys and Humans. Cerebral Cortex. 16, 811–818 (2005). https://doi.org/10.1093/cercor/bhj024.
39.
Ramnani, N.: Frontal Lobe and Posterior Parietal Contributions to the Cortico-Cerebellar System. The Cerebellum. 11, 366–383 (2012). https://doi.org/10.1007/s12311-011-0272-3.
40.
Balsters, J.H., Whelan, C.D., Robertson, I.H., Ramnani, N.: Cerebellum and Cognition: Evidence for the Encoding of Higher Order Rules. Cerebral Cortex. 23, 1433–1443 (2013). https://doi.org/10.1093/cercor/bhs127.
41.
O’Reilly, J.X., Beckmann, C.F., Tomassini, V., Ramnani, N., Johansen-Berg, H.: Distinct and Overlapping Functional Zones in the Cerebellum Defined by Resting State Functional Connectivity. Cerebral Cortex. 20, 953–965 (2010). https://doi.org/10.1093/cercor/bhp157.
42.
Glickstein, M., May, J.G., Mercier, B.E.: Corticopontine Projection in the Macaque: The Distribution of Labelled Cortical Cells After Large Injections of Horseradish Peroxidase in the Pontine Nuclei. The Journal of Comparative Neurology. 235, 343–359 (1985). https://doi.org/https://doi.org/10.1002/cne.902350306.
43.
Glickstein, M.: What Does the Cerebellum Really Do? Current Biology. 17, R824–R827 (2007). https://doi.org/10.1016/j.cub.2007.08.009.
44.
Glickstein, M.: Motor Skills but Not Cognitive Tasks. Trends in Neurosciences. 16, 450–451 (1993). https://doi.org/10.1016/0166-2236(93)90074-V.
45.
Glickstein, M., Strata, P., Voogd, J.: Cerebellum: History. Neuroscience. 162, 549–559 (2009). https://doi.org/10.1016/j.neuroscience.2009.02.054.
46.
Allen, G., Buxton, R.B., Wong, E.C., Courchesne, E.: Attentional Activation of the Cerebellum Independent of Motor Involvement. Science. 275, 1940–1943 (1997).
47.
Stein, J.: The Magnocellular Theory of Developmental Dyslexia. Dyslexia. 7, 12–36 (2001). https://doi.org/10.1002/dys.186.
48.
Kirschen, M.P., Chen, S.H.A., Schraedley-Desmond, P., Desmond, J.E.: Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage. 24, 462–472 (2005). https://doi.org/10.1016/j.neuroimage.2004.08.036.
49.
Kim, S.G., Uğurbil, K., Strick, P.L.: Activation of a Cerebellar Output Nucleus During Cognitive Processing. Science. 265, 949–951 (1994).
50.
Kirschen, M.P., Chen, S.H.A., Schraedley-Desmond, P., Desmond, J.E.: Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage. 24, 462–472 (2005). https://doi.org/10.1016/j.neuroimage.2004.08.036.
51.
Schmahmann, J.: The Cerebellar Cognitive Affective Syndrome. Brain. 121, 561–579 (1998). https://doi.org/10.1093/brain/121.4.561.
52.
Budisavljevic, S., Ramnani, N.: Cognitive Deficits From a Cerebellar Tumour: A Historical Case Report From Luria’s Laboratory. Cortex. 48, 26–35 (2012). https://doi.org/10.1016/j.cortex.2011.07.001.
53.
Baron, J.C., Bousser, M.G., Comar, D., Dequesnoy, N., Castaigne, P.: Crossed Cerebellar Diaschisis: A Remote Functional Suppression Secondary to Supratentorial Infarction in Man. Journal of Cerebral Bloodflow Medicine. 1, (1981).
54.
Mai, J.K., Voss, T., Paxinos, G.: 3.1 Surface Views of the Atlas Brain. In: Atlas of the human brain. Academic, London (2008).
55.
Duvernoy, H.M., Bourgouin, P., Vannson, J.L.: Human Brain: Surface, Three-Dimensional Sectional Anatomy With MRI, and Blood Supply. Springer, Wien, [Austria] (1999).
56.
Breedlove, S.M., Watson, N.V.: General Principles of Sensory Processing, Touch, and Pain. In: Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience. Sinauer Associates, Sunderland, Massachusetts (2013).
57.
Schieber, M.H.: Constraints on Somatotopic Organization in the Primary Motor Cortex. Journal of Neurophysiology. 86, 2125–2143 (2001).
58.
Pons, T.P., Garraghty, P.E., Ommaya, A.K., Kaas, J.H., Taub, E., Mishkin, M.: Massive Cortical Reorganization After Sensory Deafferentation in Adult Macaques. Science. 252, 1857–1860 (1991).
59.
Buonomano, D.V., Merzenich, M.M.: Cortical Plasticity: From Synapses to Maps. Annual Review of Neuroscience. 21, 149–186 (1998). https://doi.org/10.1146/annurev.neuro.21.1.149.
60.
Flor, H., Nikolajsen, L., Staehelin Jensen, T.: Phantom Limb Pain: A Case of Maladaptive CNS Plasticity? Nature Reviews Neuroscience. 7, 873–881 (2006). https://doi.org/10.1038/nrn1991.
61.
Farnè, A., Roy, A.C., Giraux, P., Dubernard, J.M., Sirigu, A.: Face or Hand, Not Both. Current Biology. 12, 1342–1346 (2002). https://doi.org/10.1016/S0960-9822(02)01018-7.
62.
Vargas, C.D., Aballéa, A., Rodrigues, É.C., Reilly, K.T., Mercier, C., Petruzzo, P., Dubernard, J.M., Sirigu, A., Kaas, J.H.: Re-Emergence of Hand-Muscle Representations in Human Motor Cortex After Hand Allograft. Proceedings of the National Academy of Sciences of the United States of America. 106, 7197–7202 (2009).
63.
Lotze, M.: Phantom Movements and Pain an fMRI Study in Upper Limb Amputees. Brain. 124, 2268–2277 (2001). https://doi.org/10.1093/brain/124.11.2268.
64.
Ramachandran, V.: The Perception of Phantom Limbs. the D. O. Hebb Lecture. Brain. 121, 1603–1630 (1998). https://doi.org/10.1093/brain/121.9.1603.
65.
Harris, A.J.: Cortical Origin of Pathological Pain. The Lancet. 354, 1464–1466 (1999). https://doi.org/10.1016/S0140-6736(99)05003-5.
66.
Giraux, P., Sirigu, A., Schneider, F., Dubernard, J.-M.: Cortical Reorganization in Motor Cortex After Graft of Both Hands. Nature Neuroscience. 4, 691–692 (2001). https://doi.org/10.1038/89472.
67.
Jain, N., Catania, K.C., Kaas, J.H.: Deactivation and Reactivation of Somatosensory Cortex After Dorsal Spinal Cord Injury. Nature. 386, 495–498 (1997). https://doi.org/10.1038/386495a0.
68.
Feldman, D.E., Brecht, M.: Map Plasticity in Somatosensory Cortex. Science. 310, 810–815 (2005).
69.
Jones, E.G.: Cortical and Subcortical Contributions to Activity-Dependent Plasticity in Primate Somatosensory Cortex. Annual Review of Neuroscience. 23, 1–37 (2000). https://doi.org/10.1146/annurev.neuro.23.1.1.
70.
Kaas, J.H., Merzenich, M.M., Killackey, H.P.: The Reorganization of Somatosensory Cortex Following Peripheral Nerve Damage in Adult and Developing Mammals. Annual Review of Neuroscience. 6, 325–356 (1983). https://doi.org/10.1146/annurev.ne.06.030183.001545.
71.
Engel, A.K., Singer, W.: Temporal Binding and the Neural Correlates of Sensory Awareness. Trends in Cognitive Sciences. 5, 16–25 (2001). https://doi.org/10.1016/S1364-6613(00)01568-0.
72.
Fries, P.: A Mechanism for Cognitive Dynamics: Neuronal Communication Through Neuronal Coherence. Trends in Cognitive Sciences. 9, 474–480 (2005). https://doi.org/10.1016/j.tics.2005.08.011.
73.
Fries, P.: Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annual Review of Neuroscience. 32, 209–224 (2009). https://doi.org/10.1146/annurev.neuro.051508.135603.
74.
Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., Barnes, G., Oostenveld, R., Daunizeau, J., Flandin, G., Penny, W., Friston, K.: EEG and MEG Data Analysis in SPM8. Computational Intelligence and Neuroscience. 2011, 1–32 (2011). https://doi.org/10.1155/2011/852961.
75.
Jenkinson, N., Brown, P.: New Insights Into the Relationship Between Dopamine, Beta Oscillations and Motor Function. Trends in Neurosciences. 34, 611–618 (2011). https://doi.org/10.1016/j.tins.2011.09.003.
76.
Tallon-Baudry, C.: Oscillatory Gamma Activity in Humans and Its Role in Object Representation. Trends in Cognitive Sciences. 3, 151–162 (1999). https://doi.org/10.1016/S1364-6613(99)01299-1.
77.
Uhlhaas, P.J., Singer, W.: Abnormal Neural Oscillations and Synchrony in Schizophrenia. Nature Reviews Neuroscience. 11, 100–113 (2010). https://doi.org/10.1038/nrn2774.
78.
Amplitude, Frequency, and Phase, https://www.youtube.com/watch?v=G5_zul5wrTY, (2014).
79.
Introduction to Brain Waves, https://www.youtube.com/watch?v=LEJdlkc-EDA, (2014).
80.
Neurexpert - The EEG and Gamma Oscillations, https://www.youtube.com/watch?v=ZRgX1dH1pf8, (2015).
81.
Sleep Basics:  Wave Form and Sleep Stages, https://www.youtube.com/watch?v=3vsq8zsF0Kc, (2013).
82.
Brain Oscillations: A Video Quick Guide, https://www.youtube.com/watch?v=_vQk9isSSSc, (2012).
83.
Oscillating Neural Network Demonstration, https://www.youtube.com/watch?v=bl2aYFv_978, (2015).
84.
Massachusetts Institute of Technology (MIT)  - YouTube, http://video.mit.edu/watch/what-harm-does-pathological-synchronization-in-parkinsons-disease-do-9489/.
85.
Wichmann, T.: Oscillatory Neuronal Activity Patterns in Parkinson’s Disease. The Biomedical & Life Sciences Collection. (2014).
86.
Theta Oscillations and Their Role in Creating Place and Grid Cell Representations | John O’Keefe, https://www.youtube.com/watch?v=PcYMA27A14A, (2014).
87.
Jan’s Interview With Wolf Singer (Full-Length) on Vimeo, https://vimeo.com/11151854, (2010).
88.
Fundamentals of Neuronal Oscillations and Synchrony, https://www.youtube.com/watch?v=vwPpSglPJTE, (2015).
89.
Fundamentals of Neuronal Oscillations and Synchrony, https://www.youtube.com/watch?v=vwPpSglPJTE, (2015).
90.
MEG and Neural Oscillations in ScZ: A Translational Perspective, https://www.youtube.com/watch?v=pRJxU3KljyI, (2016).
91.
Synchronized Neural Oscillations in the Pathophysiology of Schizophrenia, https://www.youtube.com/watch?v=Kn3XZRwd9KY, (2008).
92.
TSN: Neural Oscillations in Schizophrenia: Perspectives From MEG, http://thesciencenetwork.org/programs/rhythmic-dynamics-and-cognition/peter-uhlhaas.
93.
Purves, D.: Modulation of Movement by the Basal Ganglia. In: Neuroscience. Sinauer, Sunderland, Massachusetts (2008).
94.
Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., Aziz, T.Z.: Translational Principles of Deep Brain Stimulation. Nature Reviews Neuroscience. 8, 623–635 (2007). https://doi.org/10.1038/nrn2196.
95.
Gustavsson, A., Wittchen, H.-U., Jönsson, B., Olesen, J.: Cost of Disorders of the Brain in Europe 2010. European Neuropsychopharmacology. 21, 718–779 (2011). https://doi.org/10.1016/j.euroneuro.2011.08.008.
96.
Bergman, H., Wichmann, T., DeLong, M.R.: Reversal of Experimental Parkinsonism by Lesions of the Subthalamic Nucleus. Science. 249, 1436–1438 (1990).
97.
Fox, S.H., Brotchie, J.M.: The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research. Progress in Brain Research 184, 133–157 (2010).
98.
Wichmann, T., DeLong, M.R.: Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron. 52, 197–204 (2006). https://doi.org/10.1016/j.neuron.2006.09.022.
99.
Bezard, E., Przedborski, S.: A Tale on Animal Models of Parkinson’s Disease. Movement Disorders. 26, 993–1002 (2011). https://doi.org/10.1002/mds.23696.
100.
Wichmann, T., DeLong, M.R., Guridi, J., Obeso, J.A.: Milestones in Research on the Pathophysiology of Parkinson’s Disease. Movement Disorders. 26, 1032–1041 (2011). https://doi.org/10.1002/mds.23695.
101.
Blandini, F., Armentero, M.-T., Martignoni, E.: The 6-Hydroxydopamine Model: News from the Past. Parkinsonism & Related Disorders. 14, S124–S129 (2008). https://doi.org/10.1016/j.parkreldis.2008.04.015.
102.
Hauser, R.A.: Levodopa: Past, Present, and Future. European Neurology. 62, 1–8 (2009). https://doi.org/10.1159/000215875.
103.
Fox, S.H., Brotchie, J.M.: The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research. Progress in Brain Research 184, 133–157 (2010). https://doi.org/10.1016/S0079-6123(10)84007-5.
104.
Wichmann, T., DeLong, M.R.: Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron. 52, 197–204 (2006). https://doi.org/10.1016/j.neuron.2006.09.022.
105.
Langston, J.W., Ballard, P., Tetrud, J.W., Irwin, I.: Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science. 219, 979–980 (1983).
106.
Patel, N.K., Heywood, P., O’Sullivan, K., McCarter, R., Love, S., Gill, S.S.: Unilateral Subthalamotomy in the Treatment of Parkinson’s Disease. Brain. 126, 1136–1145 (2003). https://doi.org/10.1093/brain/awg111.
107.
Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., Koudsie, A., Limousin, P.D., Benazzouz, A., LeBas, J.F., Benabid, A.-L., Pollak, P.: Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. New England Journal of Medicine. 349, 1925–1934 (2003). https://doi.org/10.1056/NEJMoa035275.
108.
Merola, A., Zibetti, M., Angrisano, S., Rizzi, L., Ricchi, V., Artusi, C.A., Lanotte, M., Rizzone, M.G., Lopiano, L.: Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain. 134, 2074–2084 (2011). https://doi.org/10.1093/brain/awr121.
109.
Stem Cell Basics: Introduction [Stem Cell Information], https://web-beta.archive.org/web/20121120094520/https://stemcells.nih.gov/info/basics/basics1.asp.
110.
Stem Cells, https://web.archive.org/web/20221005153032/http://ns.umich.edu/stemcells/022706_TabA.html.
111.
Gould, E.: How Widespread Is Adult Neurogenesis in Mammals? Nature Reviews Neuroscience. 8, 481–488 (2007). https://doi.org/10.1038/nrn2147.
112.
Gross, C.G.: Neurogenesis in the Adult Brain: Death of a Dogma. Nature Reviews Neuroscience. 1, 67–73 (2000). https://doi.org/10.1038/35036235.
113.
Alvarez-Buylla, A.: Neurogenesis in Adult Subventricular Zone. Journal of Neuroscience. 22, 629–634 (2002).
114.
Qiang, L., Fujita, R., Yamashita, T., Angulo, S., Rhinn, H., Rhee, D., Doege, C., Chau, L., Aubry, L., Vanti, W.B., Moreno, H., Abeliovich, A.: Directed Conversion of Alzheimer’s Disease Patient Skin Fibroblasts into Functional Neurons. Cell. 146, 359–371 (2011). https://doi.org/10.1016/j.cell.2011.07.007.
115.
Björklund, L.M., Sánchez-Pernaute, R., Chung, S., Andersson, T., Chen, I.Y.C., McNaught, K.St.P., Brownell, A.-L., Jenkins, B.G., Wahlestedt, C., Kim, K.-S., Isacson, O.: Embryonic Stem Cells Develop Into Functional Dopaminergic Neurons After Transplantation in a Parkinson Rat Model. Proceedings of the National Academy of Sciences of the United States of America. 99, 2344–2349 (2002).
116.
Modo, M., Stroemer, R.P., Tang, E., Patel, S., Hodges, H.: Effects of Implantation Site of Stem Cell Grafts on Behavioral Recovery From Stroke Damage. Stroke. 33, 2270–2278 (2002). https://doi.org/10.1161/01.STR.0000027693.50675.C5.
117.
Bliss, T., Guzman, R., Daadi, M., Steinberg, G.K.: Cell Transplantation Therapy for Stroke. Stroke. 38, 817–826 (2007). https://doi.org/10.1161/01.STR.0000247888.25985.62.
118.
Piccini, P., Brooks, D.J., Björklund, A., Gunn, R.N., Grasby, P.M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H., Lindvall, O.: Dopamine Release From Nigral Transplants Visualized in Vivo in a Parkinson’s Patient. Nature Neuroscience. 2, 1137–1140 (1999). https://doi.org/10.1038/16060.
119.
Gaillard, A., Jaber, M.: Rewiring the Brain With Cell Transplantation in Parkinson’s Disease. Trends in Neurosciences. 34, 124–133 (2011). https://doi.org/10.1016/j.tins.2011.01.003.
120.
Gaillard, A., Prestoz, L., Dumartin, B., Cantereau, A., Morel, F., Roger, M., Jaber, M.: Reestablishment of Damaged Adult Motor Pathways by Grafted Embryonic Cortical Neurons. Nature Neuroscience. 10, 1294–1299 (2007). https://doi.org/10.1038/nn1970.
121.
Andres, R.H., Horie, N., Slikker, W., Keren-Gill, H., Zhan, K., Sun, G., Manley, N.C., Pereira, M.P., Sheikh, L.A., McMillan, E.L., Schaar, B.T., Svendsen, C.N., Bliss, T.M., Steinberg, G.K.: Human Neural Stem Cells Enhance Structural Plasticity and Axonal Transport in the Ischaemic Brain. Brain. 134, 1777–1789 (2011). https://doi.org/10.1093/brain/awr094.
122.
Brundin, P., Barker, R.A., Parmar, M.: Neural Grafting in Parkinson’s Disease. In: Recent Advances in Parkinson’S Disease - Translational and Clinical Research. pp. 265–294. Elsevier (2010). https://doi.org/10.1016/S0079-6123(10)84014-2.
123.
Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., Björklund, A., Lindvall, O., Langston, J.W.: Bilateral Fetal Mesencephalic Grafting in Two Patients With Parkinsonism Induced by 1-Methyl-4-Phenyl-L,2,3,6-Tetrahydropyridine (MPTP). New England Journal of Medicine. 327, 1556–1563 (1992). https://doi.org/10.1056/NEJM199211263272203.
124.
Murphy, T.H., Corbett, D.: Plasticity During Stroke Recovery: From Synapse to Behaviour. Nature Reviews Neuroscience. 10, 861–872 (2009). https://doi.org/10.1038/nrn2735.
125.
Krakauer, J.W.: Motor Learning: Its Relevance to Stroke Recovery and Neurorehabilitation. Current Opinion in Neurology. 19, 84–90 (2006).
126.
Cramer, S.C.: Repairing the Human Brain After Stroke: I. Mechanisms of Spontaneous Recovery. Annals of Neurology. 63, 272–287 (2008). https://doi.org/10.1002/ana.21393.
127.
Cramer, S.C., Shah, R., Juranek, J., Crafton, K.R., Le, V.: Activity in the Peri-Infarct Rim in Relation to Recovery From Stroke. Stroke. 37, 111–115 (2006). https://doi.org/10.1161/01.STR.0000195135.70379.1f.
128.
Nudo, R.J., Milliken, G.W.: Reorganization of Movement Representations in Primary Motor Cortex Following Focal Ischemic Infarcts in Adult Squirrel Monkeys. Journal of Neurophysiology. 75, 2144–2149 (1996). https://doi.org/10.1152/jn.1996.75.5.2144.
129.
Nudo, R.J., Wise, B.M., SiFuentes, F., Milliken, G.W.: Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science. 272, 1791–1794 (1996).
130.
Nudo, R.J.: Mechanisms for Recovery of Motor Function Following Cortical Damage. Current Opinion in Neurobiology. 16, 638–644 (2006). https://doi.org/10.1016/j.conb.2006.10.004.
131.
Liepert, J., Miltner, W.H.R., Bauder, H., Sommer, M., Dettmers, C., Taub, E., Weiller, C.: Motor Cortex Plasticity During Constraint-Induced Movement Therapy in Stroke Patients. Neuroscience Letters. 250, 5–8 (1998). https://doi.org/10.1016/S0304-3940(98)00386-3.
132.
Frost, S.B.: Reorganization of Remote Cortical Regions After Ischemic Brain Injury: A Potential Substrate for Stroke Recovery. Journal of Neurophysiology. 89, 3205–3214 (2003). https://doi.org/10.1152/jn.01143.2002.
133.
Biernaskie, J., Chernenko, G., Corbett, D.: Efficacy of Rehabilitative Experience Declines With Time After Focal Ischemic Brain Injury. Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 24, 1245–1254 (2004).
134.
Horn, S.D., DeJong, G., Smout, R.J., Gassaway, J., James, R., Conroy, B.: Stroke Rehabilitation Patients, Practice, and Outcomes: Is Earlier and More Aggressive Therapy Better? Archives of Physical Medicine and Rehabilitation. 86, 101–114 (2005). https://doi.org/10.1016/j.apmr.2005.09.016.
135.
Salter, K., Jutai, J., Hartley, M., Foley, N., Bhogal, S., Bayona, N., Teasell, R.: Impact of Early vs Delayed Admission to Rehabilitation on Functional Outcomes in Persons With Stroke. Journal of Rehabilitation Medicine. 38, 113–117 (2006). https://doi.org/10.1080/16501970500314350.
136.
Lipsanen, A., Jolkkonen, J.: Experimental Approaches to Study Functional Recovery Following Cerebral Ischemia. Cellular and Molecular Life Sciences. 68, 3007–3017 (2011). https://doi.org/10.1007/s00018-011-0733-3.
137.
McDonald, M.W., Hayward, K.S., Rosbergen, I.C.M., Jeffers, M.S., Corbett, D.: Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Frontiers in Behavioral Neuroscience. 12, (2018). https://doi.org/10.3389/fnbeh.2018.00135.
138.
Schwartz, A.B., Cui, X.T., Weber, D.J., Moran, D.W.: Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron. 52, 205–220 (2006). https://doi.org/10.1016/j.neuron.2006.09.019.
139.
Donoghue, J.P.: Bridging the Brain to the World: A Perspective on Neural Interface Systems. Neuron. 60, 511–521 (2008). https://doi.org/10.1016/j.neuron.2008.10.037.
140.
Merabet, L.B., Rizzo, J.F., Amedi, A., Somers, D.C., Pascual-Leone, A.: Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience. 6, 71–77 (2005). https://doi.org/10.1038/nrn1586.
141.
Dagnelie, G.: Psychophysical Evaluation for Visual Prosthesis. Annual Review of Biomedical Engineering. 10, 339–368 (2008). https://doi.org/10.1146/annurev.bioeng.10.061807.160529.
142.
Nicolelis, M.A.L., Lebedev, M.A.: Principles of Neural Ensemble Physiology Underlying the Operation of Brain–machine Interfaces. Nature Reviews Neuroscience. 10, 530–540 (2009). https://doi.org/10.1038/nrn2653.
143.
O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H., Nicolelis, M.A.L.: Active Tactile Exploration Using a Brain–Machine–Brain Interface. Nature. 479, 228–231 (2011). https://doi.org/10.1038/nature10489.
144.
Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical Control of a Prosthetic Arm for Self-Feeding. Nature. 453, 1098–1101 (2008). https://doi.org/10.1038/nature06996.
145.
Nicolelis, M.A.L., Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A.: Real-Time Prediction of Hand Trajectory by Ensembles of Cortical Neurons in Primates. Nature. 408, 361–365 (2000). https://doi.org/10.1038/35042582.
146.
Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal Ensemble Control of Prosthetic Devices by a Human With Tetraplegia. Nature. 442, 164–171 (2006). https://doi.org/10.1038/nature04970.
147.
Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Brain-Machine Interface: Instant Neural Control of a Movement Signal. Nature. 416, 141–142 (2002). https://doi.org/10.1038/416141a.
148.
Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L.: Real-Time Control of a Robot Arm Using Simultaneously Recorded Neurons in the Motor Cortex. Nature Neuroscience. 2, 664–670 (1999). https://doi.org/10.1038/10223.
149.
Schiller, P.H., Tehovnik, E.J.: Visual Prosthesis. Perception. 37, 1529–1559 (2008). https://doi.org/10.1068/p6100.
150.
Moritz, C.T., Perlmutter, S.I., Fetz, E.E.: Direct Control of Paralysed Muscles by Cortical Neurons. Nature. 456, 639–642 (2008). https://doi.org/10.1038/nature07418.
151.
Dobelle, Wm.H.: Artificial Vision for the Blind by Connecting a Television Camera. ASAIO Journal. 46, 3–9 (2000).
152.
Brindley, G.S., Lewin, W.S.: The Sensations Produced by Electrical Stimulation of the Visual Cortex. The Journal of Physiology. 196, 479–493 (1968). https://doi.org/10.1113/jphysiol.1968.sp008519.
153.
Merabet, L.B., Rizzo, J.F., Amedi, A., Somers, D.C., Pascual-Leone, A.: Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience. 6, 71–77 (2005). https://doi.org/10.1038/nrn1586.
154.
Veraart, C., Raftopoulos, C., Mortimer, J.T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, A., Parrini, S., Wanet-Defalque, M.-C.: Visual Sensations Produced by Optic Nerve Stimulation Using an Implanted Self-Sizing Spiral Cuff Electrode. Brain Research. 813, 181–186 (1998). https://doi.org/10.1016/S0006-8993(98)00977-9.
155.
Breedlove, S.M.: The Chemistry of Behavior. In: Biological psychology: an introduction to behavioral, cognitive, and clinical neuroscience. Sinauer Associates, Sunderland, Massachusetts (2013).
156.
Pierce, R.C., Kumaresan, V.: The Mesolimbic Dopamine System: The Final Common Pathway for the Reinforcing Effect of Drugs of Abuse? Neuroscience & Biobehavioral Reviews. 30, 215–238 (2006). https://doi.org/10.1016/j.neubiorev.2005.04.016.
157.
Volkow, N.D., Wang, G.-J., Fowler, J.S., Tomasi, D.: Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology. 52, 321–336 (2012). https://doi.org/10.1146/annurev-pharmtox-010611-134625.
158.
Schultz, W.: Getting Formal with Dopamine and Reward. Neuron. 36, 241–263 (2002). https://doi.org/10.1016/S0896-6273(02)00967-4.
159.
Olds, J.: Self-Stimulation of the Brain; Its Use to Study Local Effects of Hunger, Sex, and Drugs. Science. 127, 315–324 (1958).
160.
Iversen, L.: Cannabis and the Brain. Brain. 126, 1252–1270 (2003). https://doi.org/10.1093/brain/awg143.
161.
Ikemoto, S., Wise, R.A.: Mapping of Chemical Trigger Zones for Reward. Neuropharmacology. 47, 190–201 (2004). https://doi.org/10.1016/j.neuropharm.2004.07.012.
162.
Volkow, N.D., Wang, G.-J., Fowler, J.S., Tomasi, D.: Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology. 52, 321–336 (2012). https://doi.org/10.1146/annurev-pharmtox-010611-134625.
163.
Nutt, D.J., Lingford-Hughes, A., Erritzoe, D., Stokes, P.R.A.: The Dopamine Theory of Addiction: 40 Years of Highs and Lows. Nature Reviews Neuroscience. 16, 305–312 (2015). https://doi.org/10.1038/nrn3939.
164.
Olds, J., Milner, P.: Positive Reinforcement Produced by Electrical Stimulation of Septal Area and Other Regions of Rat Brain. Journal of Comparative Psychology. 419–427 (1954).
165.
Di Chiara, G., Imperato, A.: Drugs Abused by Humans Preferentially Increase Synaptic Dopamine Concentrations in the Mesolimbic System of Freely Moving Rats. Proceedings of the National Academy of Sciences of the United States of America. 85, 5274–5278 (1988).
166.
Goldberg, S.R., Tanda, G., Munzar, P.: Self-Administration Behavior Is Maintained by the Psychoactive Ingredient of Marijuana in Squirrel Monkeys. Nature Neuroscience. 3, 1073–1074 (2000). https://doi.org/10.1038/80577.
167.
Justinova, Z., Tanda, G., Redhi, G.H., Goldberg, S.R.: Self-Administration of delta9-Tetrahydrocannabinol (THC) by Drug Naive Squirrel Monkeys. Psychopharmacology. 169, 135–140 (2003). https://doi.org/10.1007/s00213-003-1484-0.
168.
Zangen, A.: Two Brain Sites for Cannabinoid Reward. Journal of Neuroscience. 26, 4901–4907 (2006).
169.
Volkow, N.D., Wang, G.-J., Fowler, J.S., Logan, J., Gatley, S.J., Wong, C., Hitzemann, R., Pappas, N.R.: Reinforcing Effects of Psychostimulants in Humans Are Associated with Increases in Brain Dopamine and Occupancy of D2Receptors. Journal of Pharmacology and Experimental Therapeutics. 291, 409–415 (1999).
170.
Lingford-Hughes, A.R., Welch, S., Peters, L., Nutt, D.J.: BAP Updated Guidelines: Evidence-Based Guidelines for the Pharmacological Management of Substance Abuse, Harmful Use, Addiction and Comorbidity: Recommendations From BAP. Journal of Psychopharmacology. 26, 899–952 (2012). https://doi.org/10.1177/0269881112444324.
171.
Weinstein, A.M.: Pharmacological Treatment of Cannabis Dependence. Current pharmaceutical design. 17, 1351–1358 (2011).