1.
Passingham RE, Wise SP. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. 1st ed. Oxford University Press; 2012.
2.
Passingham RE, Wise SP. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Vol Oxford Psychology Series. Oxford University Press; 2012. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=4701018
3.
Fuster JM. Prefrontal Neurons in Networks of Executive Memory. Brain Research Bulletin. 2000;52(5):331-336. doi:10.1016/S0361-9230(99)00258-0
4.
Fuster JM. The Prefrontal Cortex - An Update: Time Is of the Essence. Neuron. 2001;30(2):319-333. doi:10.1016/S0896-6273(01)00285-9
5.
Fuster JM. Upper Processing Stages of the Perception–action Cycle. Trends in Cognitive Sciences. 2004;8(4):143-145. doi:10.1016/j.tics.2004.02.004
6.
Koechlin E, Ody C, Kouneiher F. The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science. 2003;302(5648):1181-1185. http://www.jstor.org/stable/3835489?seq=1#page_scan_tab_contents
7.
Koechlin E, Summerfield C. An Information Theoretical Approach to Prefrontal Executive Function. Trends in Cognitive Sciences. 2007;11(6):229-235. doi:10.1016/j.tics.2007.04.005
8.
Ramnani N, Owen AM. Anterior Prefrontal Cortex: Insights Into Function From Anatomy and Neuroimaging. Nature Reviews Neuroscience. 2004;5(3):184-194. doi:10.1038/nrn1343
9.
Constantinidis C. Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex. Journal of Neuroscience. 2001;21(10):3646-3655. http://www.jneurosci.org/content/21/10/3646.long
10.
Leon MI, Shadlen MN. Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque. Neuron. 1999;24(2):415-425. doi:10.1016/S0896-6273(00)80854-5
11.
Quintana J. From Perception to Action: Temporal Integrative Functions of Prefrontal and Parietal Neurons. Cerebral Cortex. 1999;9(3):213-221. doi:10.1093/cercor/9.3.213
12.
Sakai K, Rowe JB, Passingham RE. Active Maintenance in Prefrontal Area 46 Creates Distractor-Resistant Memory. Nature Neuroscience. 2002;5(5):479-484. doi:10.1038/nn846
13.
Rowe JB, Toni I, Josephs O, Frackowiak RSJ, Passingham RE. The Prefrontal Cortex: Response Selection or Maintenance Within Working Memory? Science. 2000;288(5471):1656-1660. http://www.jstor.org/stable/3075487?seq=1#page_scan_tab_contents
14.
Ramnani N, Passingham RE. Changes in the Human Brain During Rhythm Learning. Journal of Cognitive Neuroscience. 2001;13(7):952-966. doi:10.1162/089892901753165863
15.
Passingham RE, Weinberger D, Petrides M. Attention to Action. Philosophical Transactions: Biological Sciences. 1996;351(1346):1473-1479. http://www.jstor.org/stable/3069194?seq=1#page_scan_tab_contents
16.
Jueptner M. Anatomy of Motor Learning. I. Frontal Cortex and Attention to Action. Journal of Neurophysiology. 1997;77(3):1313-1324. http://jn.physiology.org/content/77/3/1313
17.
Shallice T, Burgess P, Robertson I. The Domain of Supervisory Processes and Temporal Organization of Behaviour [And Discussion]. Philosophical Transactions: Biological Sciences. 1996;351(1346):1405-1412. http://www.jstor.org/stable/3069186?seq=1#page_scan_tab_contents
18.
Miller EK. The Prefrontal Cortex and Cognitive Control. Nature Reviews Neuroscience. 2000;1(1):59-65. doi:10.1038/35036228
19.
Miller EK, Freedman DJ, Wallis JD. The Prefrontal Cortex: Categories, Concepts and Cognition. Philosophical Transactions: Biological Sciences. 2002;357(1424):1123-1136. http://www.jstor.org/stable/3066752?seq=1#page_scan_tab_contents
20.
Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science. 2001;291(5502):312-316. http://www.jstor.org/stable/3082349?seq=1#page_scan_tab_contents
21.
Arai Y. Spatial Orientation of Caloric Nystagmus in Semicircular Canal-Plugged Monkeys. Journal of Neurophysiology. 2002;88(2):914-928. http://jn.physiology.org/content/88/2/914
22.
Freedman DJ. A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization. Journal of Neuroscience. 2003;23(12):5235-5246. http://www.jneurosci.org/content/23/12/5235.short
23.
Williams C. The Secret of You. New Scientist. 2018;239(3185):36-39. doi:10.1016/S0262-4079(18)31211-9
24.
Ramnani N. The Primate Cortico-Cerebellar System: Anatomy and Function. Nature Reviews Neuroscience. 2006;7(7):511-522. doi:10.1038/nrn1953
25.
Ramnani N. Cerebellar Learning. Elsevier Science & Technology; 2014. https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=160502
26.
Ramnani N. Automatic and Controlled Processing in the Corticocerebellar System. In: Ramnani N, ed. Cerebellar Learning. Vol Progress in brain research. Elsevier; 2014:255-285. doi:10.1016/B978-0-444-63356-9.00010-8
27.
Strick PL, Dum RP, Fiez JA. Cerebellum and Nonmotor Function. Annual Review of Neuroscience. 2009;32(1):413-434. doi:10.1146/annurev.neuro.31.060407.125606
28.
Strick PL, Dum RP, Fiez JA. Cerebellum and Nonmotor Function. Annual Review of Neuroscience. 2009;32(1):413-434. doi:10.1146/annurev.neuro.31.060407.125606
29.
Leiner HC, Leiner AL, Dow RS. Cognitive and Language Functions of the Human Cerebellum. Trends in Neurosciences. 1993;16(11):444-447. doi:10.1016/0166-2236(93)90072-T
30.
The Cerebellum: Connections, Computations and Cognition. Trends in Cognitive Sciences. 1998;2(9). http://www.sciencedirect.com/science/journal/13646613/2/9
31.
Kelly RM, Strick PL. Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. The Journal of Neuroscience. 2003;23(23):8432-8444. doi:10.1523/JNEUROSCI.23-23-08432.2003
32.
Middleton FA, Strick PL. Dentate Output Channels: Motor and Cognitive Components. The Cerebellum: From Structure to Control. 1997;Progress in Brain Research 114:553-566. doi:10.1016/S0079-6123(08)63386-5
33.
Middleton FA, Strick PL. Anatomical Evidence for Cerebellar and Basal Ganglia Involvement in Higher Cognitive Function. Science. 1994;266(5184):458-461. https://www.jstor.org/stable/2885336
34.
Hayter AL, Langdon DW, Ramnani N. Cerebellar Contributions to Working Memory. NeuroImage. 2007;36(3):943-954. doi:10.1016/j.neuroimage.2007.03.011
35.
Balsters JH, Cussans E, Diedrichsen J, et al. Evolution of the Cerebellar Cortex: The Selective Expansion of Prefrontal-Projecting Cerebellar Lobules. NeuroImage. 2010;49(3):2045-2052. doi:10.1016/j.neuroimage.2009.10.045
36.
Balsters JH, Ramnani N. Symbolic Representations of Action in the Human Cerebellum. NeuroImage. 2008;43(2):388-398. doi:10.1016/j.neuroimage.2008.07.010
37.
Balsters JH. Cerebellar Plasticity and the Automation of First-Order Rules. Journal of Neuroscience. 2011;31(6):2305-2312. http://www.jneurosci.org/content/31/6/2305
38.
Ramnani N. The Evolution of Prefrontal Inputs to the Cortico-pontine System: Diffusion Imaging Evidence from Macaque Monkeys and Humans. Cerebral Cortex. 2005;16(6):811-818. doi:10.1093/cercor/bhj024
39.
Ramnani N. Frontal Lobe and Posterior Parietal Contributions to the Cortico-Cerebellar System. The Cerebellum. 2012;11(2):366-383. doi:10.1007/s12311-011-0272-3
40.
Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and Cognition: Evidence for the Encoding of Higher Order Rules. Cerebral Cortex. 2013;23(6):1433-1443. doi:10.1093/cercor/bhs127
41.
O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and Overlapping Functional Zones in the Cerebellum Defined by Resting State Functional Connectivity. Cerebral Cortex. 2010;20(4):953-965. doi:10.1093/cercor/bhp157
42.
Glickstein M, May JG, Mercier BE. Corticopontine Projection in the Macaque: The Distribution of Labelled Cortical Cells After Large Injections of Horseradish Peroxidase in the Pontine Nuclei. The Journal of Comparative Neurology. 1985;235(3):343-359. doi:https://doi.org/10.1002/cne.902350306
43.
Glickstein M. What Does the Cerebellum Really Do? Current Biology. 2007;17(19):R824-R827. doi:10.1016/j.cub.2007.08.009
44.
Glickstein M. Motor Skills but Not Cognitive Tasks. Trends in Neurosciences. 1993;16(11):450-451. doi:10.1016/0166-2236(93)90074-V
45.
Glickstein M, Strata P, Voogd J. Cerebellum: History. Neuroscience. 2009;162(3):549-559. doi:10.1016/j.neuroscience.2009.02.054
46.
Allen G, Buxton RB, Wong EC, Courchesne E. Attentional Activation of the Cerebellum Independent of Motor Involvement. Science. 1997;275(5308):1940-1943. http://www.jstor.org/stable/2893081?seq=1#page_scan_tab_contents
47.
Stein J. The Magnocellular Theory of Developmental Dyslexia. Dyslexia. 2001;7(1):12-36. doi:10.1002/dys.186
48.
Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE. Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage. 2005;24(2):462-472. doi:10.1016/j.neuroimage.2004.08.036
49.
Kim SG, Uğurbil K, Strick PL. Activation of a Cerebellar Output Nucleus During Cognitive Processing. Science. 1994;265(5174):949-951. http://www.jstor.org/stable/2884519?seq=1#page_scan_tab_contents
50.
Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE. Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage. 2005;24(2):462-472. doi:10.1016/j.neuroimage.2004.08.036
51.
Schmahmann J. The Cerebellar Cognitive Affective Syndrome. Brain. 1998;121(4):561-579. doi:10.1093/brain/121.4.561
52.
Budisavljevic S, Ramnani N. Cognitive Deficits From a Cerebellar Tumour: A Historical Case Report From Luria’s Laboratory. Cortex. 2012;48(1):26-35. doi:10.1016/j.cortex.2011.07.001
53.
Baron JC, Bousser MG, Comar D, Dequesnoy N, Castaigne P. Crossed Cerebellar Diaschisis: A Remote Functional Suppression Secondary to Supratentorial Infarction in Man. Journal of Cerebral Bloodflow Medicine. 1981;1.
54.
Mai JK, Voss T, Paxinos G. 3.1 Surface Views of the Atlas Brain. In: Atlas of the Human Brain. 3rd ed. Academic; 2008.
55.
Duvernoy HM, Bourgouin P, Vannson JL. Human Brain: Surface, Three-Dimensional Sectional Anatomy With MRI, and Blood Supply. Second, completely revised and enlarged edition. Springer; 1999. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=3099186
56.
Breedlove SM, Watson NV. General Principles of Sensory Processing, Touch, and Pain. In: Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience. 7th Edition. Sinauer Associates; 2013.
57.
Schieber MH. Constraints on Somatotopic Organization in the Primary Motor Cortex. Journal of Neurophysiology. 2001;86(5):2125-2143. http://jn.physiology.org/content/86/5/2125
58.
Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive Cortical Reorganization After Sensory Deafferentation in Adult Macaques. Science. 1991;252(5014):1857-1860. http://www.jstor.org/stable/2875886?seq=1#page_scan_tab_contents
59.
Buonomano DV, Merzenich MM. Cortical Plasticity: From Synapses to Maps. Annual Review of Neuroscience. 1998;21(1):149-186. doi:10.1146/annurev.neuro.21.1.149
60.
Flor H, Nikolajsen L, Staehelin Jensen T. Phantom Limb Pain: A Case of Maladaptive CNS Plasticity? Nature Reviews Neuroscience. 2006;7(11):873-881. doi:10.1038/nrn1991
61.
Farnè A, Roy AC, Giraux P, Dubernard JM, Sirigu A. Face or Hand, Not Both. Current Biology. 2002;12(15):1342-1346. doi:10.1016/S0960-9822(02)01018-7
62.
Vargas CD, Aballéa A, Rodrigues ÉC, et al. Re-Emergence of Hand-Muscle Representations in Human Motor Cortex After Hand Allograft. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(17):7197-7202. http://www.jstor.org/stable/40483397?seq=1#page_scan_tab_contents
63.
Lotze M. Phantom Movements and Pain an fMRI Study in Upper Limb Amputees. Brain. 2001;124(11):2268-2277. doi:10.1093/brain/124.11.2268
64.
Ramachandran V. The Perception of Phantom Limbs. the D. O. Hebb Lecture. Brain. 1998;121(9):1603-1630. doi:10.1093/brain/121.9.1603
65.
Harris AJ. Cortical Origin of Pathological Pain. The Lancet. 1999;354(9188):1464-1466. doi:10.1016/S0140-6736(99)05003-5
66.
Giraux P, Sirigu A, Schneider F, Dubernard JM. Cortical Reorganization in Motor Cortex After Graft of Both Hands. Nature Neuroscience. 2001;4(7):691-692. doi:10.1038/89472
67.
Jain N, Catania KC, Kaas JH. Deactivation and Reactivation of Somatosensory Cortex After Dorsal Spinal Cord Injury. Nature. 1997;386(6624):495-498. doi:10.1038/386495a0
68.
Feldman DE, Brecht M. Map Plasticity in Somatosensory Cortex. Science. 2005;310(5749):810-815. http://www.jstor.org/stable/3842754?seq=1#page_scan_tab_contents
69.
Jones EG. Cortical and Subcortical Contributions to Activity-Dependent Plasticity in Primate Somatosensory Cortex. Annual Review of Neuroscience. 2000;23(1):1-37. doi:10.1146/annurev.neuro.23.1.1
70.
Kaas JH, Merzenich MM, Killackey HP. The Reorganization of Somatosensory Cortex Following Peripheral Nerve Damage in Adult and Developing Mammals. Annual Review of Neuroscience. 1983;6(1):325-356. doi:10.1146/annurev.ne.06.030183.001545
71.
Engel AK, Singer W. Temporal Binding and the Neural Correlates of Sensory Awareness. Trends in Cognitive Sciences. 2001;5(1):16-25. doi:10.1016/S1364-6613(00)01568-0
72.
Fries P. A Mechanism for Cognitive Dynamics: Neuronal Communication Through Neuronal Coherence. Trends in Cognitive Sciences. 2005;9(10):474-480. doi:10.1016/j.tics.2005.08.011
73.
Fries P. Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annual Review of Neuroscience. 2009;32(1):209-224. doi:10.1146/annurev.neuro.051508.135603
74.
Litvak V, Mattout J, Kiebel S, et al. EEG and MEG Data Analysis in SPM8. Computational Intelligence and Neuroscience. 2011;2011:1-32. doi:10.1155/2011/852961
75.
Jenkinson N, Brown P. New Insights Into the Relationship Between Dopamine, Beta Oscillations and Motor Function. Trends in Neurosciences. 2011;34(12):611-618. doi:10.1016/j.tins.2011.09.003
76.
Tallon-Baudry C. Oscillatory Gamma Activity in Humans and Its Role in Object Representation. Trends in Cognitive Sciences. 1999;3(4):151-162. doi:10.1016/S1364-6613(99)01299-1
77.
Uhlhaas PJ, Singer W. Abnormal Neural Oscillations and Synchrony in Schizophrenia. Nature Reviews Neuroscience. 2010;11(2):100-113. doi:10.1038/nrn2774
78.
Amplitude, Frequency, and Phase. Published online 2014. https://www.youtube.com/watch?v=G5_zul5wrTY
79.
Introduction to Brain Waves. Published online 2014. https://www.youtube.com/watch?v=LEJdlkc-EDA
80.
Neurexpert - The EEG and Gamma Oscillations. Published online 2015. https://www.youtube.com/watch?v=ZRgX1dH1pf8
81.
Sleep Basics:  Wave Form and Sleep Stages. Published online 2013. https://www.youtube.com/watch?v=3vsq8zsF0Kc
82.
Brain Oscillations: A Video Quick Guide. Published online 2012. https://www.youtube.com/watch?v=_vQk9isSSSc
83.
Oscillating Neural Network Demonstration. Published online 2015. https://www.youtube.com/watch?v=bl2aYFv_978
84.
Massachusetts Institute of Technology (MIT)  - YouTube. http://video.mit.edu/watch/what-harm-does-pathological-synchronization-in-parkinsons-disease-do-9489/
85.
Wichmann T. Oscillatory Neuronal Activity Patterns in Parkinson’s Disease. The Biomedical & Life Sciences Collection. Published online 2014. https://hstalks.com/t/2820/oscillatory-neuronal-activity-patterns-in-parkinso/
86.
Theta Oscillations and Their Role in Creating Place and Grid Cell Representations | John O’Keefe. Published online 2014. https://www.youtube.com/watch?v=PcYMA27A14A
87.
Jan’s Interview With Wolf Singer (Full-Length) on Vimeo. Published online 2010. https://vimeo.com/11151854
88.
Fundamentals of Neuronal Oscillations and Synchrony. Published online 2015. https://www.youtube.com/watch?v=vwPpSglPJTE
89.
Fundamentals of Neuronal Oscillations and Synchrony. Published online 2015. https://www.youtube.com/watch?v=vwPpSglPJTE
90.
MEG and Neural Oscillations in ScZ: A Translational Perspective. Published online 2016. https://www.youtube.com/watch?v=pRJxU3KljyI
91.
Synchronized Neural Oscillations in the Pathophysiology of Schizophrenia. Published online 2008. https://www.youtube.com/watch?v=Kn3XZRwd9KY
92.
TSN: Neural Oscillations in Schizophrenia: Perspectives From MEG. http://thesciencenetwork.org/programs/rhythmic-dynamics-and-cognition/peter-uhlhaas
93.
Purves D. Modulation of Movement by the Basal Ganglia. In: Neuroscience. 4th Edition. Sinauer; 2008.
94.
Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. Translational Principles of Deep Brain Stimulation. Nature Reviews Neuroscience. 2007;8(8):623-635. doi:10.1038/nrn2196
95.
Gustavsson A, Wittchen HU, Jönsson B, Olesen J. Cost of Disorders of the Brain in Europe 2010. European Neuropsychopharmacology. 2011;21(10):718-779. doi:10.1016/j.euroneuro.2011.08.008
96.
Bergman H, Wichmann T, DeLong MR. Reversal of Experimental Parkinsonism by Lesions of the Subthalamic Nucleus. Science. 1990;249(4975):1436-1438. http://www.jstor.org/stable/2878195?seq=1#page_scan_tab_contents
97.
Fox SH, Brotchie JM. The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research. 2010;Progress in Brain Research 184:133-157. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/reader.action?docID=616914&ppg=144
98.
Wichmann T, DeLong MR. Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron. 2006;52(1):197-204. doi:10.1016/j.neuron.2006.09.022
99.
Bezard E, Przedborski S. A Tale on Animal Models of Parkinson’s Disease. Movement Disorders. 2011;26(6):993-1002. doi:10.1002/mds.23696
100.
Wichmann T, DeLong MR, Guridi J, Obeso JA. Milestones in Research on the Pathophysiology of Parkinson’s Disease. Movement Disorders. 2011;26(6):1032-1041. doi:10.1002/mds.23695
101.
Blandini F, Armentero MT, Martignoni E. The 6-Hydroxydopamine Model: News from the Past. Parkinsonism & Related Disorders. 2008;14:S124-S129. doi:10.1016/j.parkreldis.2008.04.015
102.
Hauser RA. Levodopa: Past, Present, and Future. European Neurology. 2009;62(1):1-8. doi:10.1159/000215875
103.
Fox SH, Brotchie JM. The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research. 2010;Progress in Brain Research 184:133-157. doi:10.1016/S0079-6123(10)84007-5
104.
Wichmann T, DeLong MR. Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron. 2006;52(1):197-204. doi:10.1016/j.neuron.2006.09.022
105.
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science. 1983;219(4587):979-980. http://www.jstor.org/stable/1690734?seq=1#page_scan_tab_contents
106.
Patel NK, Heywood P, O’Sullivan K, McCarter R, Love S, Gill SS. Unilateral Subthalamotomy in the Treatment of Parkinson’s Disease. Brain. 2003;126(5):1136-1145. doi:10.1093/brain/awg111
107.
Krack P, Batir A, Van Blercom N, et al. Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. New England Journal of Medicine. 2003;349(20):1925-1934. doi:10.1056/NEJMoa035275
108.
Merola A, Zibetti M, Angrisano S, et al. Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain. 2011;134(7):2074-2084. doi:10.1093/brain/awr121
109.
Stem Cell Basics: Introduction [Stem Cell Information]. https://web-beta.archive.org/web/20121120094520/https://stemcells.nih.gov/info/basics/basics1.asp
110.
Stem Cells. https://web.archive.org/web/20221005153032/http://ns.umich.edu/stemcells/022706_TabA.html
111.
Gould E. How Widespread Is Adult Neurogenesis in Mammals? Nature Reviews Neuroscience. 2007;8(6):481-488. doi:10.1038/nrn2147
112.
Gross CG. Neurogenesis in the Adult Brain: Death of a Dogma. Nature Reviews Neuroscience. 2000;1(1):67-73. doi:10.1038/35036235
113.
Alvarez-Buylla A. Neurogenesis in Adult Subventricular Zone. Journal of Neuroscience. 2002;22(3):629-634. http://www.jneurosci.org/content/22/3/629
114.
Qiang L, Fujita R, Yamashita T, et al. Directed Conversion of Alzheimer’s Disease Patient Skin Fibroblasts into Functional Neurons. Cell. 2011;146(3):359-371. doi:10.1016/j.cell.2011.07.007
115.
Björklund LM, Sánchez-Pernaute R, Chung S, et al. Embryonic Stem Cells Develop Into Functional Dopaminergic Neurons After Transplantation in a Parkinson Rat Model. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(4):2344-2349. http://www.jstor.org/stable/3057967?seq=1#page_scan_tab_contents
116.
Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of Implantation Site of Stem Cell Grafts on Behavioral Recovery From Stroke Damage. Stroke. 2002;33(9):2270-2278. doi:10.1161/01.STR.0000027693.50675.C5
117.
Bliss T, Guzman R, Daadi M, Steinberg GK. Cell Transplantation Therapy for Stroke. Stroke. 2007;38(2):817-826. doi:10.1161/01.STR.0000247888.25985.62
118.
Piccini P, Brooks DJ, Björklund A, et al. Dopamine Release From Nigral Transplants Visualized in Vivo in a Parkinson’s Patient. Nature Neuroscience. 1999;2(12):1137-1140. doi:10.1038/16060
119.
Gaillard A, Jaber M. Rewiring the Brain With Cell Transplantation in Parkinson’s Disease. Trends in Neurosciences. 2011;34(3):124-133. doi:10.1016/j.tins.2011.01.003
120.
Gaillard A, Prestoz L, Dumartin B, et al. Reestablishment of Damaged Adult Motor Pathways by Grafted Embryonic Cortical Neurons. Nature Neuroscience. 2007;10(10):1294-1299. doi:10.1038/nn1970
121.
Andres RH, Horie N, Slikker W, et al. Human Neural Stem Cells Enhance Structural Plasticity and Axonal Transport in the Ischaemic Brain. Brain. 2011;134(6):1777-1789. doi:10.1093/brain/awr094
122.
Brundin P, Barker RA, Parmar M. Neural Grafting in Parkinson’s Disease. In: Recent Advances in Parkinson’S Disease - Translational and Clinical Research. Vol 184. Elsevier; 2010:265-294. doi:10.1016/S0079-6123(10)84014-2
123.
Widner H, Tetrud J, Rehncrona S, et al. Bilateral Fetal Mesencephalic Grafting in Two Patients With Parkinsonism Induced by 1-Methyl-4-Phenyl-L,2,3,6-Tetrahydropyridine (MPTP). New England Journal of Medicine. 1992;327(22):1556-1563. doi:10.1056/NEJM199211263272203
124.
Murphy TH, Corbett D. Plasticity During Stroke Recovery: From Synapse to Behaviour. Nature Reviews Neuroscience. 2009;10(12):861-872. doi:10.1038/nrn2735
125.
Krakauer JW. Motor Learning: Its Relevance to Stroke Recovery and Neurorehabilitation. Current Opinion in Neurology. 2006;19(1):84-90.
126.
Cramer SC. Repairing the Human Brain After Stroke: I. Mechanisms of Spontaneous Recovery. Annals of Neurology. 2008;63(3):272-287. doi:10.1002/ana.21393
127.
Cramer SC, Shah R, Juranek J, Crafton KR, Le V. Activity in the Peri-Infarct Rim in Relation to Recovery From Stroke. Stroke. 2006;37(1):111-115. doi:10.1161/01.STR.0000195135.70379.1f
128.
Nudo RJ, Milliken GW. Reorganization of Movement Representations in Primary Motor Cortex Following Focal Ischemic Infarcts in Adult Squirrel Monkeys. Journal of Neurophysiology. 1996;75(5):2144-2149. doi:10.1152/jn.1996.75.5.2144
129.
Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science. 1996;272(5269):1791-1794. http://www.jstor.org/stable/2889327?seq=1#page_scan_tab_contents
130.
Nudo RJ. Mechanisms for Recovery of Motor Function Following Cortical Damage. Current Opinion in Neurobiology. 2006;16(6):638-644. doi:10.1016/j.conb.2006.10.004
131.
Liepert J, Miltner WHR, Bauder H, et al. Motor Cortex Plasticity During Constraint-Induced Movement Therapy in Stroke Patients. Neuroscience Letters. 1998;250(1):5-8. doi:10.1016/S0304-3940(98)00386-3
132.
Frost SB. Reorganization of Remote Cortical Regions After Ischemic Brain Injury: A Potential Substrate for Stroke Recovery. Journal of Neurophysiology. 2003;89(6):3205-3214. doi:10.1152/jn.01143.2002
133.
Biernaskie J, Chernenko G, Corbett D. Efficacy of Rehabilitative Experience Declines With Time After Focal Ischemic Brain Injury. Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 2004;24(5):1245-1254. https://librarysearch.royalholloway.ac.uk/primo-explore/openurl?Z39.88-2004&rft.jtitle=Journal%20Of%20Neuroscience%20:%20The%20Official%20Journal%20Of%20The%20Society%20For%20Neuroscience&rft.atitle=Efficacy%20of%20Rehabilitative%20Experience%20Declines%20With%20Time%20After%20Focal%20Ischemic%20Brain%20Injury.&rft.volume=24&rft.spage=1245&rft.issn=-&rft.epage=1254&rft.issue=5&rft.date=2004&rft.aufirst=Jeff&rft.aulast=Biernaskie&vid=44ROY_VU2&institution=44ROY&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true
134.
Horn SD, DeJong G, Smout RJ, Gassaway J, James R, Conroy B. Stroke Rehabilitation Patients, Practice, and Outcomes: Is Earlier and More Aggressive Therapy Better? Archives of Physical Medicine and Rehabilitation. 2005;86(12):101-114. doi:10.1016/j.apmr.2005.09.016
135.
Salter K, Jutai J, Hartley M, et al. Impact of Early vs Delayed Admission to Rehabilitation on Functional Outcomes in Persons With Stroke. Journal of Rehabilitation Medicine. 2006;38(2):113-117. doi:10.1080/16501970500314350
136.
Lipsanen A, Jolkkonen J. Experimental Approaches to Study Functional Recovery Following Cerebral Ischemia. Cellular and Molecular Life Sciences. 2011;68(18):3007-3017. doi:10.1007/s00018-011-0733-3
137.
McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Frontiers in Behavioral Neuroscience. 2018;12. doi:10.3389/fnbeh.2018.00135
138.
Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron. 2006;52(1):205-220. doi:10.1016/j.neuron.2006.09.019
139.
Donoghue JP. Bridging the Brain to the World: A Perspective on Neural Interface Systems. Neuron. 2008;60(3):511-521. doi:10.1016/j.neuron.2008.10.037
140.
Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A. Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience. 2005;6(1):71-77. doi:10.1038/nrn1586
141.
Dagnelie G. Psychophysical Evaluation for Visual Prosthesis. Annual Review of Biomedical Engineering. 2008;10(1):339-368. doi:10.1146/annurev.bioeng.10.061807.160529
142.
Nicolelis MAL, Lebedev MA. Principles of Neural Ensemble Physiology Underlying the Operation of Brain–machine Interfaces. Nature Reviews Neuroscience. 2009;10(7):530-540. doi:10.1038/nrn2653
143.
O’Doherty JE, Lebedev MA, Ifft PJ, et al. Active Tactile Exploration Using a Brain–Machine–Brain Interface. Nature. 2011;479(7372):228-231. doi:10.1038/nature10489
144.
Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical Control of a Prosthetic Arm for Self-Feeding. Nature. 2008;453(7198):1098-1101. doi:10.1038/nature06996
145.
Nicolelis MAL, Wessberg J, Stambaugh CR, et al. Real-Time Prediction of Hand Trajectory by Ensembles of Cortical Neurons in Primates. Nature. 2000;408(6810):361-365. doi:10.1038/35042582
146.
Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal Ensemble Control of Prosthetic Devices by a Human With Tetraplegia. Nature. 2006;442(7099):164-171. doi:10.1038/nature04970
147.
Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Brain-Machine Interface: Instant Neural Control of a Movement Signal. Nature. 2002;416(6877):141-142. doi:10.1038/416141a
148.
Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL. Real-Time Control of a Robot Arm Using Simultaneously Recorded Neurons in the Motor Cortex. Nature Neuroscience. 1999;2(7):664-670. doi:10.1038/10223
149.
Schiller PH, Tehovnik EJ. Visual Prosthesis. Perception. 2008;37(10):1529-1559. doi:10.1068/p6100
150.
Moritz CT, Perlmutter SI, Fetz EE. Direct Control of Paralysed Muscles by Cortical Neurons. Nature. 2008;456(7222):639-642. doi:10.1038/nature07418
151.
Dobelle WmH. Artificial Vision for the Blind by Connecting a Television Camera. ASAIO Journal. 2000;46(1):3-9. https://web.archive.org/web/20210605173238/https://journals.lww.com/asaiojournal/fulltext/2000/01000/artificial_vision_for_the_blind_by_connecting_a.2.aspx
152.
Brindley GS, Lewin WS. The Sensations Produced by Electrical Stimulation of the Visual Cortex. The Journal of Physiology. 1968;196(2):479-493. doi:10.1113/jphysiol.1968.sp008519
153.
Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A. Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience. 2005;6(1):71-77. doi:10.1038/nrn1586
154.
Veraart C, Raftopoulos C, Mortimer JT, et al. Visual Sensations Produced by Optic Nerve Stimulation Using an Implanted Self-Sizing Spiral Cuff Electrode. Brain Research. 1998;813(1):181-186. doi:10.1016/S0006-8993(98)00977-9
155.
Breedlove SM. The Chemistry of Behavior. In: Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience. Seventh edition. Sinauer Associates; 2013.
156.
Pierce RC, Kumaresan V. The Mesolimbic Dopamine System: The Final Common Pathway for the Reinforcing Effect of Drugs of Abuse? Neuroscience & Biobehavioral Reviews. 2006;30(2):215-238. doi:10.1016/j.neubiorev.2005.04.016
157.
Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology. 2012;52(1):321-336. doi:10.1146/annurev-pharmtox-010611-134625
158.
Schultz W. Getting Formal with Dopamine and Reward. Neuron. 2002;36(2):241-263. doi:10.1016/S0896-6273(02)00967-4
159.
Olds J. Self-Stimulation of the Brain; Its Use to Study Local Effects of Hunger, Sex, and Drugs. Science. 1958;127(3294):315-324. http://www.jstor.org/stable/1754983?seq=1#page_scan_tab_contents
160.
Iversen L. Cannabis and the Brain. Brain. 2003;126(6):1252-1270. doi:10.1093/brain/awg143
161.
Ikemoto S, Wise RA. Mapping of Chemical Trigger Zones for Reward. Neuropharmacology. 2004;47:190-201. doi:10.1016/j.neuropharm.2004.07.012
162.
Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology. 2012;52(1):321-336. doi:10.1146/annurev-pharmtox-010611-134625
163.
Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA. The Dopamine Theory of Addiction: 40 Years of Highs and Lows. Nature Reviews Neuroscience. 2015;16(5):305-312. doi:10.1038/nrn3939
164.
Olds J, Milner P. Positive Reinforcement Produced by Electrical Stimulation of Septal Area and Other Regions of Rat Brain. Journal of Comparative Psychology. 1954;(6):419-427. http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1955-06866-001&site=ehost-live
165.
Di Chiara G, Imperato A. Drugs Abused by Humans Preferentially Increase Synaptic Dopamine Concentrations in the Mesolimbic System of Freely Moving Rats. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(14):5274-5278. http://www.jstor.org/stable/32403?seq=1#page_scan_tab_contents
166.
Goldberg SR, Tanda G, Munzar P. Self-Administration Behavior Is Maintained by the Psychoactive Ingredient of Marijuana in Squirrel Monkeys. Nature Neuroscience. 2000;3(11):1073-1074. doi:10.1038/80577
167.
Justinova Z, Tanda G, Redhi GH, Goldberg SR. Self-Administration of delta9-Tetrahydrocannabinol (THC) by Drug Naive Squirrel Monkeys. Psychopharmacology. 2003;169(2):135-140. doi:10.1007/s00213-003-1484-0
168.
Zangen A. Two Brain Sites for Cannabinoid Reward. Journal of Neuroscience. 2006;26(18):4901-4907. http://www.jneurosci.org/content/26/18/4901
169.
Volkow ND, Wang GJ, Fowler JS, et al. Reinforcing Effects of Psychostimulants in Humans Are Associated with Increases in Brain Dopamine and Occupancy of D2Receptors. Journal of Pharmacology and Experimental Therapeutics. 1999;291(1):409-415. https://web.archive.org/web/20210517131243/http://jpet.aspetjournals.org/content/291/1/409
170.
Lingford-Hughes AR, Welch S, Peters L, Nutt DJ. BAP Updated Guidelines: Evidence-Based Guidelines for the Pharmacological Management of Substance Abuse, Harmful Use, Addiction and Comorbidity: Recommendations From BAP. Journal of Psychopharmacology. 2012;26(7):899-952. doi:10.1177/0269881112444324
171.
Weinstein AM. Pharmacological Treatment of Cannabis Dependence. Current pharmaceutical design. 2011;17(14):1351-1358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171994/