Allen, G., Buxton, R. B., Wong, E. C., & Courchesne, E. (1997). Attentional Activation of the Cerebellum Independent of Motor Involvement. Science, 275(5308), 1940–1943. http://www.jstor.org/stable/2893081?seq=1#page_scan_tab_contents
Alvarez-Buylla, A. (2002). Neurogenesis in Adult Subventricular Zone. Journal of Neuroscience, 22(3), 629–634. http://www.jneurosci.org/content/22/3/629
Amplitude, Frequency, and Phase. (2014). https://www.youtube.com/watch?v=G5_zul5wrTY
Andres, R. H., Horie, N., Slikker, W., Keren-Gill, H., Zhan, K., Sun, G., Manley, N. C., Pereira, M. P., Sheikh, L. A., McMillan, E. L., Schaar, B. T., Svendsen, C. N., Bliss, T. M., & Steinberg, G. K. (2011). Human Neural Stem Cells Enhance Structural Plasticity and Axonal Transport in the Ischaemic Brain. Brain, 134(6), 1777–1789. https://doi.org/10.1093/brain/awr094
Arai, Y. (2002). Spatial Orientation of Caloric Nystagmus in Semicircular Canal-Plugged Monkeys. Journal of Neurophysiology, 88(2), 914–928. http://jn.physiology.org/content/88/2/914
Balsters, J. H. (2011). Cerebellar Plasticity and the Automation of First-Order Rules. Journal of Neuroscience, 31(6), 2305–2312. http://www.jneurosci.org/content/31/6/2305
Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., & Ramnani, N. (2010). Evolution of the Cerebellar Cortex: The Selective Expansion of Prefrontal-Projecting Cerebellar Lobules. NeuroImage, 49(3), 2045–2052. https://doi.org/10.1016/j.neuroimage.2009.10.045
Balsters, J. H., & Ramnani, N. (2008). Symbolic Representations of Action in the Human Cerebellum. NeuroImage, 43(2), 388–398. https://doi.org/10.1016/j.neuroimage.2008.07.010
Balsters, J. H., Whelan, C. D., Robertson, I. H., & Ramnani, N. (2013). Cerebellum and Cognition: Evidence for the Encoding of Higher Order Rules. Cerebral Cortex, 23(6), 1433–1443. https://doi.org/10.1093/cercor/bhs127
Baron, J. C., Bousser, M. G., Comar, D., Dequesnoy, N., & Castaigne, P. (1981). Crossed Cerebellar Diaschisis: A Remote Functional Suppression Secondary to Supratentorial Infarction in Man. Journal of Cerebral Bloodflow Medicine, 1.
Bergman, H., Wichmann, T., & DeLong, M. R. (1990). Reversal of Experimental Parkinsonism by Lesions of the Subthalamic Nucleus. Science, 249(4975), 1436–1438. http://www.jstor.org/stable/2878195?seq=1#page_scan_tab_contents
Bezard, E., & Przedborski, S. (2011). A Tale on Animal Models of Parkinson’s Disease. Movement Disorders, 26(6), 993–1002. https://doi.org/10.1002/mds.23696
Biernaskie, J., Chernenko, G., & Corbett, D. (2004). Efficacy of Rehabilitative Experience Declines With Time After Focal Ischemic Brain Injury. Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience, 24(5), 1245–1254. https://librarysearch.royalholloway.ac.uk/primo-explore/openurl?Z39.88-2004&rft.jtitle=Journal%20Of%20Neuroscience%20:%20The%20Official%20Journal%20Of%20The%20Society%20For%20Neuroscience&rft.atitle=Efficacy%20of%20Rehabilitative%20Experience%20Declines%20With%20Time%20After%20Focal%20Ischemic%20Brain%20Injury.&rft.volume=24&rft.spage=1245&rft.issn=-&rft.epage=1254&rft.issue=5&rft.date=2004&rft.aufirst=Jeff&rft.aulast=Biernaskie&vid=44ROY_VU2&institution=44ROY&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true
Björklund, L. M., Sánchez-Pernaute, R., Chung, S., Andersson, T., Chen, I. Y. C., McNaught, K. St. P., Brownell, A.-L., Jenkins, B. G., Wahlestedt, C., Kim, K.-S., & Isacson, O. (2002). Embryonic Stem Cells Develop Into Functional Dopaminergic Neurons After Transplantation in a Parkinson Rat Model. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2344–2349. http://www.jstor.org/stable/3057967?seq=1#page_scan_tab_contents
Blandini, F., Armentero, M.-T., & Martignoni, E. (2008). The 6-Hydroxydopamine Model: News from the Past. Parkinsonism & Related Disorders, 14, S124–S129. https://doi.org/10.1016/j.parkreldis.2008.04.015
Bliss, T., Guzman, R., Daadi, M., & Steinberg, G. K. (2007). Cell Transplantation Therapy for Stroke. Stroke, 38(2), 817–826. https://doi.org/10.1161/01.STR.0000247888.25985.62
Brain Oscillations: A Video Quick Guide. (2012). https://www.youtube.com/watch?v=_vQk9isSSSc
Breedlove, S. M. (2013). The Chemistry of Behavior. In Biological psychology: an introduction to behavioral, cognitive, and clinical neuroscience (Seventh edition). Sinauer Associates.
Breedlove, S. M., & Watson, N. V. (2013). General Principles of Sensory Processing, Touch, and Pain. In Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience (7th Edition). Sinauer Associates.
Brindley, G. S., & Lewin, W. S. (1968). The Sensations Produced by Electrical Stimulation of the Visual Cortex. The Journal of Physiology, 196(2), 479–493. https://doi.org/10.1113/jphysiol.1968.sp008519
Brundin, P., Barker, R. A., & Parmar, M. (2010). Neural Grafting in Parkinson’s Disease. In Recent Advances in Parkinson’S Disease - Translational and Clinical Research (Vol. 184, pp. 265–294). Elsevier. https://doi.org/10.1016/S0079-6123(10)84014-2
Budisavljevic, S., & Ramnani, N. (2012). Cognitive Deficits From a Cerebellar Tumour: A Historical Case Report From Luria’s Laboratory. Cortex, 48(1), 26–35. https://doi.org/10.1016/j.cortex.2011.07.001
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical Plasticity: From Synapses to Maps. Annual Review of Neuroscience, 21(1), 149–186. https://doi.org/10.1146/annurev.neuro.21.1.149
Chapin, J. K., Moxon, K. A., Markowitz, R. S., & Nicolelis, M. A. L. (1999). Real-Time Control of a Robot Arm Using Simultaneously Recorded Neurons in the Motor Cortex. Nature Neuroscience, 2(7), 664–670. https://doi.org/10.1038/10223
Constantinidis, C. (2001). Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex. Journal of Neuroscience, 21(10), 3646–3655. http://www.jneurosci.org/content/21/10/3646.long
Cramer, S. C. (2008). Repairing the Human Brain After Stroke: I. Mechanisms of Spontaneous Recovery. Annals of Neurology, 63(3), 272–287. https://doi.org/10.1002/ana.21393
Cramer, S. C., Shah, R., Juranek, J., Crafton, K. R., & Le, V. (2006). Activity in the Peri-Infarct Rim in Relation to Recovery From Stroke. Stroke, 37(1), 111–115. https://doi.org/10.1161/01.STR.0000195135.70379.1f
Dagnelie, G. (2008). Psychophysical Evaluation for Visual Prosthesis. Annual Review of Biomedical Engineering, 10(1), 339–368. https://doi.org/10.1146/annurev.bioeng.10.061807.160529
Di Chiara, G., & Imperato, A. (1988). Drugs Abused by Humans Preferentially Increase Synaptic Dopamine Concentrations in the Mesolimbic System of Freely Moving Rats. Proceedings of the National Academy of Sciences of the United States of America, 85(14), 5274–5278. http://www.jstor.org/stable/32403?seq=1#page_scan_tab_contents
Dobelle, Wm. H. (2000). Artificial Vision for the Blind by Connecting a Television Camera. ASAIO Journal, 46(1), 3–9. https://web.archive.org/web/20210605173238/https://journals.lww.com/asaiojournal/fulltext/2000/01000/artificial_vision_for_the_blind_by_connecting_a.2.aspx
Donoghue, J. P. (2008). Bridging the Brain to the World: A Perspective on Neural Interface Systems. Neuron, 60(3), 511–521. https://doi.org/10.1016/j.neuron.2008.10.037
Duvernoy, H. M., Bourgouin, P., & Vannson, J. L. (1999). Human Brain: Surface, Three-Dimensional Sectional Anatomy With MRI, and Blood Supply (Second, completely revised and enlarged edition). Springer. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=3099186
Engel, A. K., & Singer, W. (2001). Temporal Binding and the Neural Correlates of Sensory Awareness. Trends in Cognitive Sciences, 5(1), 16–25. https://doi.org/10.1016/S1364-6613(00)01568-0
Farnè, A., Roy, A. C., Giraux, P., Dubernard, J. M., & Sirigu, A. (2002). Face or Hand, Not Both. Current Biology, 12(15), 1342–1346. https://doi.org/10.1016/S0960-9822(02)01018-7
Feldman, D. E., & Brecht, M. (2005). Map Plasticity in Somatosensory Cortex. Science, 310(5749), 810–815. http://www.jstor.org/stable/3842754?seq=1#page_scan_tab_contents
Flor, H., Nikolajsen, L., & Staehelin Jensen, T. (2006). Phantom Limb Pain: A Case of Maladaptive CNS Plasticity? Nature Reviews Neuroscience, 7(11), 873–881. https://doi.org/10.1038/nrn1991
Fox, S. H., & Brotchie, J. M. (2010a). The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research, Progress in Brain Research 184, 133–157. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/reader.action?docID=616914&ppg=144
Fox, S. H., & Brotchie, J. M. (2010b). The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research, Progress in Brain Research 184, 133–157. https://doi.org/10.1016/S0079-6123(10)84007-5
Freedman, D. J. (2003). A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization. Journal of Neuroscience, 23(12), 5235–5246. http://www.jneurosci.org/content/23/12/5235.short
Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science, 291(5502), 312–316. http://www.jstor.org/stable/3082349?seq=1#page_scan_tab_contents
Fries, P. (2005). A Mechanism for Cognitive Dynamics: Neuronal Communication Through Neuronal Coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/j.tics.2005.08.011
Fries, P. (2009). Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annual Review of Neuroscience, 32(1), 209–224. https://doi.org/10.1146/annurev.neuro.051508.135603
Frost, S. B. (2003). Reorganization of Remote Cortical Regions After Ischemic Brain Injury: A Potential Substrate for Stroke Recovery. Journal of Neurophysiology, 89(6), 3205–3214. https://doi.org/10.1152/jn.01143.2002
Fundamentals of Neuronal Oscillations and Synchrony. (2015a). https://www.youtube.com/watch?v=vwPpSglPJTE
Fundamentals of Neuronal Oscillations and Synchrony. (2015b). https://www.youtube.com/watch?v=vwPpSglPJTE
Fuster, J. M. (2000). Prefrontal Neurons in Networks of Executive Memory. Brain Research Bulletin, 52(5), 331–336. https://doi.org/10.1016/S0361-9230(99)00258-0
Fuster, J. M. (2001). The Prefrontal Cortex - An Update: Time Is of the Essence. Neuron, 30(2), 319–333. https://doi.org/10.1016/S0896-6273(01)00285-9
Fuster, J. M. (2004). Upper Processing Stages of the Perception–action Cycle. Trends in Cognitive Sciences, 8(4), 143–145. https://doi.org/10.1016/j.tics.2004.02.004
Gaillard, A., & Jaber, M. (2011). Rewiring the Brain With Cell Transplantation in Parkinson’s Disease. Trends in Neurosciences, 34(3), 124–133. https://doi.org/10.1016/j.tins.2011.01.003
Gaillard, A., Prestoz, L., Dumartin, B., Cantereau, A., Morel, F., Roger, M., & Jaber, M. (2007). Reestablishment of Damaged Adult Motor Pathways by Grafted Embryonic Cortical Neurons. Nature Neuroscience, 10(10), 1294–1299. https://doi.org/10.1038/nn1970
Giraux, P., Sirigu, A., Schneider, F., & Dubernard, J.-M. (2001). Cortical Reorganization in Motor Cortex After Graft of Both Hands. Nature Neuroscience, 4(7), 691–692. https://doi.org/10.1038/89472
Glickstein, M. (1993). Motor Skills but Not Cognitive Tasks. Trends in Neurosciences, 16(11), 450–451. https://doi.org/10.1016/0166-2236(93)90074-V
Glickstein, M. (2007). What Does the Cerebellum Really Do? Current Biology, 17(19), R824–R827. https://doi.org/10.1016/j.cub.2007.08.009
Glickstein, M., May, J. G., & Mercier, B. E. (1985). Corticopontine Projection in the Macaque: The Distribution of Labelled Cortical Cells After Large Injections of Horseradish Peroxidase in the Pontine Nuclei. The Journal of Comparative Neurology, 235(3), 343–359. https://doi.org/https://doi.org/10.1002/cne.902350306
Glickstein, M., Strata, P., & Voogd, J. (2009). Cerebellum: History. Neuroscience, 162(3), 549–559. https://doi.org/10.1016/j.neuroscience.2009.02.054
Goldberg, S. R., Tanda, G., & Munzar, P. (2000). Self-Administration Behavior Is Maintained by the Psychoactive Ingredient of Marijuana in Squirrel Monkeys. Nature Neuroscience, 3(11), 1073–1074. https://doi.org/10.1038/80577
Gould, E. (2007). How Widespread Is Adult Neurogenesis in Mammals? Nature Reviews Neuroscience, 8(6), 481–488. https://doi.org/10.1038/nrn2147
Gross, C. G. (2000). Neurogenesis in the Adult Brain: Death of a Dogma. Nature Reviews Neuroscience, 1(1), 67–73. https://doi.org/10.1038/35036235
Gustavsson, A., Wittchen, H.-U., Jönsson, B., & Olesen, J. (2011). Cost of Disorders of the Brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779. https://doi.org/10.1016/j.euroneuro.2011.08.008
Harris, A. J. (1999). Cortical Origin of Pathological Pain. The Lancet, 354(9188), 1464–1466. https://doi.org/10.1016/S0140-6736(99)05003-5
Hauser, R. A. (2009). Levodopa: Past, Present, and Future. European Neurology, 62(1), 1–8. https://doi.org/10.1159/000215875
Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar Contributions to Working Memory. NeuroImage, 36(3), 943–954. https://doi.org/10.1016/j.neuroimage.2007.03.011
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). Neuronal Ensemble Control of Prosthetic Devices by a Human With Tetraplegia. Nature, 442(7099), 164–171. https://doi.org/10.1038/nature04970
Horn, S. D., DeJong, G., Smout, R. J., Gassaway, J., James, R., & Conroy, B. (2005). Stroke Rehabilitation Patients, Practice, and Outcomes: Is Earlier and More Aggressive Therapy Better? Archives of Physical Medicine and Rehabilitation, 86(12), 101–114. https://doi.org/10.1016/j.apmr.2005.09.016
Ikemoto, S., & Wise, R. A. (2004). Mapping of Chemical Trigger Zones for Reward. Neuropharmacology, 47, 190–201. https://doi.org/10.1016/j.neuropharm.2004.07.012
Introduction to Brain Waves. (2014). https://www.youtube.com/watch?v=LEJdlkc-EDA
Iversen, L. (2003). Cannabis and the Brain. Brain, 126(6), 1252–1270. https://doi.org/10.1093/brain/awg143
Jain, N., Catania, K. C., & Kaas, J. H. (1997). Deactivation and Reactivation of Somatosensory Cortex After Dorsal Spinal Cord Injury. Nature, 386(6624), 495–498. https://doi.org/10.1038/386495a0
Jan’s Interview With Wolf Singer (Full-Length) on Vimeo. (2010). https://vimeo.com/11151854
Jenkinson, N., & Brown, P. (2011). New Insights Into the Relationship Between Dopamine, Beta Oscillations and Motor Function. Trends in Neurosciences, 34(12), 611–618. https://doi.org/10.1016/j.tins.2011.09.003
Jones, E. G. (2000). Cortical and Subcortical Contributions to Activity-Dependent Plasticity in Primate Somatosensory Cortex. Annual Review of Neuroscience, 23(1), 1–37. https://doi.org/10.1146/annurev.neuro.23.1.1
Jueptner, M. (1997). Anatomy of Motor Learning. I. Frontal Cortex and Attention to Action. Journal of Neurophysiology, 77(3), 1313–1324. http://jn.physiology.org/content/77/3/1313
Justinova, Z., Tanda, G., Redhi, G. H., & Goldberg, S. R. (2003). Self-Administration of delta9-Tetrahydrocannabinol (THC) by Drug Naive Squirrel Monkeys. Psychopharmacology, 169(2), 135–140. https://doi.org/10.1007/s00213-003-1484-0
Kaas, J. H., Merzenich, M. M., & Killackey, H. P. (1983). The Reorganization of Somatosensory Cortex Following Peripheral Nerve Damage in Adult and Developing Mammals. Annual Review of Neuroscience, 6(1), 325–356. https://doi.org/10.1146/annurev.ne.06.030183.001545
Kelly, R. M., & Strick, P. L. (2003). Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. The Journal of Neuroscience, 23(23), 8432–8444. https://doi.org/10.1523/JNEUROSCI.23-23-08432.2003
Kim, S. G., Uğurbil, K., & Strick, P. L. (1994). Activation of a Cerebellar Output Nucleus During Cognitive Processing. Science, 265(5174), 949–951. http://www.jstor.org/stable/2884519?seq=1#page_scan_tab_contents
Kirschen, M. P., Chen, S. H. A., Schraedley-Desmond, P., & Desmond, J. E. (2005a). Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage, 24(2), 462–472. https://doi.org/10.1016/j.neuroimage.2004.08.036
Kirschen, M. P., Chen, S. H. A., Schraedley-Desmond, P., & Desmond, J. E. (2005b). Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage, 24(2), 462–472. https://doi.org/10.1016/j.neuroimage.2004.08.036
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science, 302(5648), 1181–1185. http://www.jstor.org/stable/3835489?seq=1#page_scan_tab_contents
Koechlin, E., & Summerfield, C. (2007). An Information Theoretical Approach to Prefrontal Executive Function. Trends in Cognitive Sciences, 11(6), 229–235. https://doi.org/10.1016/j.tics.2007.04.005
Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., Koudsie, A., Limousin, P. D., Benazzouz, A., LeBas, J. F., Benabid, A.-L., & Pollak, P. (2003). Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. New England Journal of Medicine, 349(20), 1925–1934. https://doi.org/10.1056/NEJMoa035275
Krakauer, J. W. (2006). Motor Learning: Its Relevance to Stroke Recovery and Neurorehabilitation. Current Opinion in Neurology, 19(1), 84–90.
Kringelbach, M. L., Jenkinson, N., Owen, S. L. F., & Aziz, T. Z. (2007). Translational Principles of Deep Brain Stimulation. Nature Reviews Neuroscience, 8(8), 623–635. https://doi.org/10.1038/nrn2196
Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science, 219(4587), 979–980. http://www.jstor.org/stable/1690734?seq=1#page_scan_tab_contents
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993). Cognitive and Language Functions of the Human Cerebellum. Trends in Neurosciences, 16(11), 444–447. https://doi.org/10.1016/0166-2236(93)90072-T
Leon, M. I., & Shadlen, M. N. (1999). Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque. Neuron, 24(2), 415–425. https://doi.org/10.1016/S0896-6273(00)80854-5
Liepert, J., Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C., Taub, E., & Weiller, C. (1998). Motor Cortex Plasticity During Constraint-Induced Movement Therapy in Stroke Patients. Neuroscience Letters, 250(1), 5–8. https://doi.org/10.1016/S0304-3940(98)00386-3
Lingford-Hughes, A. R., Welch, S., Peters, L., & Nutt, D. J. (2012). BAP Updated Guidelines: Evidence-Based Guidelines for the Pharmacological Management of Substance Abuse, Harmful Use, Addiction and Comorbidity: Recommendations From BAP. Journal of Psychopharmacology, 26(7), 899–952. https://doi.org/10.1177/0269881112444324
Lipsanen, A., & Jolkkonen, J. (2011). Experimental Approaches to Study Functional Recovery Following Cerebral Ischemia. Cellular and Molecular Life Sciences, 68(18), 3007–3017. https://doi.org/10.1007/s00018-011-0733-3
Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J., Barnes, G., Oostenveld, R., Daunizeau, J., Flandin, G., Penny, W., & Friston, K. (2011). EEG and MEG Data Analysis in SPM8. Computational Intelligence and Neuroscience, 2011, 1–32. https://doi.org/10.1155/2011/852961
Lotze, M. (2001). Phantom Movements and Pain an fMRI Study in Upper Limb Amputees. Brain, 124(11), 2268–2277. https://doi.org/10.1093/brain/124.11.2268
Mai, J. K., Voss, T., & Paxinos, G. (2008). 3.1 Surface Views of the Atlas Brain. In Atlas of the human brain (3rd ed). Academic.
Massachusetts Institute of Technology (MIT)  - YouTube. (n.d.). http://video.mit.edu/watch/what-harm-does-pathological-synchronization-in-parkinsons-disease-do-9489/
McDonald, M. W., Hayward, K. S., Rosbergen, I. C. M., Jeffers, M. S., & Corbett, D. (2018). Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00135
MEG and Neural Oscillations in ScZ: A Translational Perspective. (2016). https://www.youtube.com/watch?v=pRJxU3KljyI
Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C., & Pascual-Leone, A. (2005a). Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience, 6(1), 71–77. https://doi.org/10.1038/nrn1586
Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C., & Pascual-Leone, A. (2005b). Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience, 6(1), 71–77. https://doi.org/10.1038/nrn1586
Merola, A., Zibetti, M., Angrisano, S., Rizzi, L., Ricchi, V., Artusi, C. A., Lanotte, M., Rizzone, M. G., & Lopiano, L. (2011). Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain, 134(7), 2074–2084. https://doi.org/10.1093/brain/awr121
Middleton, F. A., & Strick, P. L. (1994). Anatomical Evidence for Cerebellar and Basal Ganglia Involvement in Higher Cognitive Function. Science, 266(5184), 458–461. https://www.jstor.org/stable/2885336
Middleton, F. A., & Strick, P. L. (1997). Dentate Output Channels: Motor and Cognitive Components. The Cerebellum: From Structure to Control, Progress in Brain Research 114, 553–566. https://doi.org/10.1016/S0079-6123(08)63386-5
Miller, E. K. (2000). The Prefrontal Cortex and Cognitive Control. Nature Reviews Neuroscience, 1(1), 59–65. https://doi.org/10.1038/35036228
Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The Prefrontal Cortex: Categories, Concepts and Cognition. Philosophical Transactions: Biological Sciences, 357(1424), 1123–1136. http://www.jstor.org/stable/3066752?seq=1#page_scan_tab_contents
Modo, M., Stroemer, R. P., Tang, E., Patel, S., & Hodges, H. (2002). Effects of Implantation Site of Stem Cell Grafts on Behavioral Recovery From Stroke Damage. Stroke, 33(9), 2270–2278. https://doi.org/10.1161/01.STR.0000027693.50675.C5
Moritz, C. T., Perlmutter, S. I., & Fetz, E. E. (2008). Direct Control of Paralysed Muscles by Cortical Neurons. Nature, 456(7222), 639–642. https://doi.org/10.1038/nature07418
Murphy, T. H., & Corbett, D. (2009). Plasticity During Stroke Recovery: From Synapse to Behaviour. Nature Reviews Neuroscience, 10(12), 861–872. https://doi.org/10.1038/nrn2735
Neurexpert - The EEG and Gamma Oscillations. (2015). https://www.youtube.com/watch?v=ZRgX1dH1pf8
Nicolelis, M. A. L., & Lebedev, M. A. (2009). Principles of Neural Ensemble Physiology Underlying the Operation of Brain–machine Interfaces. Nature Reviews Neuroscience, 10(7), 530–540. https://doi.org/10.1038/nrn2653
Nicolelis, M. A. L., Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., Kim, J., Biggs, S. J., & Srinivasan, M. A. (2000). Real-Time Prediction of Hand Trajectory by Ensembles of Cortical Neurons in Primates. Nature, 408(6810), 361–365. https://doi.org/10.1038/35042582
Nudo, R. J. (2006). Mechanisms for Recovery of Motor Function Following Cortical Damage. Current Opinion in Neurobiology, 16(6), 638–644. https://doi.org/10.1016/j.conb.2006.10.004
Nudo, R. J., & Milliken, G. W. (1996). Reorganization of Movement Representations in Primary Motor Cortex Following Focal Ischemic Infarcts in Adult Squirrel Monkeys. Journal of Neurophysiology, 75(5), 2144–2149. https://doi.org/10.1152/jn.1996.75.5.2144
Nudo, R. J., Wise, B. M., SiFuentes, F., & Milliken, G. W. (1996). Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science, 272(5269), 1791–1794. http://www.jstor.org/stable/2889327?seq=1#page_scan_tab_contents
Nutt, D. J., Lingford-Hughes, A., Erritzoe, D., & Stokes, P. R. A. (2015). The Dopamine Theory of Addiction: 40 Years of Highs and Lows. Nature Reviews Neuroscience, 16(5), 305–312. https://doi.org/10.1038/nrn3939
O’Doherty, J. E., Lebedev, M. A., Ifft, P. J., Zhuang, K. Z., Shokur, S., Bleuler, H., & Nicolelis, M. A. L. (2011). Active Tactile Exploration Using a Brain–Machine–Brain Interface. Nature, 479(7372), 228–231. https://doi.org/10.1038/nature10489
Olds, J. (1958). Self-Stimulation of the Brain; Its Use to Study Local Effects of Hunger, Sex, and Drugs. Science, 127(3294), 315–324. http://www.jstor.org/stable/1754983?seq=1#page_scan_tab_contents
Olds, J., & Milner, P. (1954). Positive Reinforcement Produced by Electrical Stimulation of Septal Area and Other Regions of Rat Brain. Journal of Comparative Psychology, 6, 419–427. http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=1955-06866-001&site=ehost-live
O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and Overlapping Functional Zones in the Cerebellum Defined by Resting State Functional Connectivity. Cerebral Cortex, 20(4), 953–965. https://doi.org/10.1093/cercor/bhp157
Oscillating Neural Network Demonstration. (2015). https://www.youtube.com/watch?v=bl2aYFv_978
Passingham, R. E., Weinberger, D., & Petrides, M. (1996). Attention to Action. Philosophical Transactions: Biological Sciences, 351(1346), 1473–1479. http://www.jstor.org/stable/3069194?seq=1#page_scan_tab_contents
Passingham, R. E., & Wise, S. P. (2012a). The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (1st ed). Oxford University Press.
Passingham, R. E., & Wise, S. P. (2012b). The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight: Vol. Oxford Psychology Series. Oxford University Press. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=4701018
Patel, N. K., Heywood, P., O’Sullivan, K., McCarter, R., Love, S., & Gill, S. S. (2003). Unilateral Subthalamotomy in the Treatment of Parkinson’s Disease. Brain, 126(5), 1136–1145. https://doi.org/10.1093/brain/awg111
Piccini, P., Brooks, D. J., Björklund, A., Gunn, R. N., Grasby, P. M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H., & Lindvall, O. (1999). Dopamine Release From Nigral Transplants Visualized in Vivo in a Parkinson’s Patient. Nature Neuroscience, 2(12), 1137–1140. https://doi.org/10.1038/16060
Pierce, R. C., & Kumaresan, V. (2006). The Mesolimbic Dopamine System: The Final Common Pathway for the Reinforcing Effect of Drugs of Abuse? Neuroscience & Biobehavioral Reviews, 30(2), 215–238. https://doi.org/10.1016/j.neubiorev.2005.04.016
Pons, T. P., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., Taub, E., & Mishkin, M. (1991). Massive Cortical Reorganization After Sensory Deafferentation in Adult Macaques. Science, 252(5014), 1857–1860. http://www.jstor.org/stable/2875886?seq=1#page_scan_tab_contents
Purves, D. (2008). Modulation of Movement by the Basal Ganglia. In Neuroscience (4th Edition). Sinauer.
Qiang, L., Fujita, R., Yamashita, T., Angulo, S., Rhinn, H., Rhee, D., Doege, C., Chau, L., Aubry, L., Vanti, W. B., Moreno, H., & Abeliovich, A. (2011). Directed Conversion of Alzheimer’s Disease Patient Skin Fibroblasts into Functional Neurons. Cell, 146(3), 359–371. https://doi.org/10.1016/j.cell.2011.07.007
Quintana, J. (1999). From Perception to Action: Temporal Integrative Functions of Prefrontal and Parietal Neurons. Cerebral Cortex, 9(3), 213–221. https://doi.org/10.1093/cercor/9.3.213
Ramachandran, V. (1998). The Perception of Phantom Limbs. the D. O. Hebb Lecture. Brain, 121(9), 1603–1630. https://doi.org/10.1093/brain/121.9.1603
Ramnani, N. (2005). The Evolution of Prefrontal Inputs to the Cortico-pontine System: Diffusion Imaging Evidence from Macaque Monkeys and Humans. Cerebral Cortex, 16(6), 811–818. https://doi.org/10.1093/cercor/bhj024
Ramnani, N. (2006). The Primate Cortico-Cerebellar System: Anatomy and Function. Nature Reviews Neuroscience, 7(7), 511–522. https://doi.org/10.1038/nrn1953
Ramnani, N. (2012). Frontal Lobe and Posterior Parietal Contributions to the Cortico-Cerebellar System. The Cerebellum, 11(2), 366–383. https://doi.org/10.1007/s12311-011-0272-3
Ramnani, N. (2014a). Automatic and Controlled Processing in the Corticocerebellar System. In N. Ramnani (Ed.), Cerebellar learning: Vol. Progress in brain research (pp. 255–285). Elsevier. https://doi.org/10.1016/B978-0-444-63356-9.00010-8
Ramnani, N. (2014b). Cerebellar Learning. Elsevier Science & Technology. https://moodle.royalholloway.ac.uk/mod/resource/view.php?id=160502
Ramnani, N., & Owen, A. M. (2004). Anterior Prefrontal Cortex: Insights Into Function From Anatomy and Neuroimaging. Nature Reviews Neuroscience, 5(3), 184–194. https://doi.org/10.1038/nrn1343
Ramnani, N., & Passingham, R. E. (2001). Changes in the Human Brain During Rhythm Learning. Journal of Cognitive Neuroscience, 13(7), 952–966. https://doi.org/10.1162/089892901753165863
Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J., & Passingham, R. E. (2000). The Prefrontal Cortex: Response Selection or Maintenance Within Working Memory? Science, 288(5471), 1656–1660. http://www.jstor.org/stable/3075487?seq=1#page_scan_tab_contents
Sakai, K., Rowe, J. B., & Passingham, R. E. (2002). Active Maintenance in Prefrontal Area 46 Creates Distractor-Resistant Memory. Nature Neuroscience, 5(5), 479–484. https://doi.org/10.1038/nn846
Salter, K., Jutai, J., Hartley, M., Foley, N., Bhogal, S., Bayona, N., & Teasell, R. (2006). Impact of Early vs Delayed Admission to Rehabilitation on Functional Outcomes in Persons With Stroke. Journal of Rehabilitation Medicine, 38(2), 113–117. https://doi.org/10.1080/16501970500314350
Schieber, M. H. (2001). Constraints on Somatotopic Organization in the Primary Motor Cortex. Journal of Neurophysiology, 86(5), 2125–2143. http://jn.physiology.org/content/86/5/2125
Schiller, P. H., & Tehovnik, E. J. (2008). Visual Prosthesis. Perception, 37(10), 1529–1559. https://doi.org/10.1068/p6100
Schmahmann, J. (1998). The Cerebellar Cognitive Affective Syndrome. Brain, 121(4), 561–579. https://doi.org/10.1093/brain/121.4.561
Schultz, W. (2002). Getting Formal with Dopamine and Reward. Neuron, 36(2), 241–263. https://doi.org/10.1016/S0896-6273(02)00967-4
Schwartz, A. B., Cui, X. T., Weber, D. J., & Moran, D. W. (2006). Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron, 52(1), 205–220. https://doi.org/10.1016/j.neuron.2006.09.019
Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Brain-Machine Interface: Instant Neural Control of a Movement Signal. Nature, 416(6877), 141–142. https://doi.org/10.1038/416141a
Shallice, T., Burgess, P., & Robertson, I. (1996). The Domain of Supervisory Processes and Temporal Organization of Behaviour [And Discussion]. Philosophical Transactions: Biological Sciences, 351(1346), 1405–1412. http://www.jstor.org/stable/3069186?seq=1#page_scan_tab_contents
Sleep Basics:  Wave Form and Sleep Stages. (2013). https://www.youtube.com/watch?v=3vsq8zsF0Kc
Stein, J. (2001). The Magnocellular Theory of Developmental Dyslexia. Dyslexia, 7(1), 12–36. https://doi.org/10.1002/dys.186
Stem Cell Basics: Introduction [Stem Cell Information]. (n.d.). https://web-beta.archive.org/web/20121120094520/https://stemcells.nih.gov/info/basics/basics1.asp
Stem Cells. (n.d.). https://web.archive.org/web/20221005153032/http://ns.umich.edu/stemcells/022706_TabA.html
Strick, P. L., Dum, R. P., & Fiez, J. A. (2009a). Cerebellum and Nonmotor Function. Annual Review of Neuroscience, 32(1), 413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606
Strick, P. L., Dum, R. P., & Fiez, J. A. (2009b). Cerebellum and Nonmotor Function. Annual Review of Neuroscience, 32(1), 413–434. https://doi.org/10.1146/annurev.neuro.31.060407.125606
Synchronized Neural Oscillations in the Pathophysiology of Schizophrenia. (2008). https://www.youtube.com/watch?v=Kn3XZRwd9KY
Tallon-Baudry, C. (1999). Oscillatory Gamma Activity in Humans and Its Role in Object Representation. Trends in Cognitive Sciences, 3(4), 151–162. https://doi.org/10.1016/S1364-6613(99)01299-1
The Cerebellum: Connections, Computations and Cognition. (1998). Trends in Cognitive Sciences, 2(9). http://www.sciencedirect.com/science/journal/13646613/2/9
Theta Oscillations and Their Role in Creating Place and Grid Cell Representations | John O’Keefe. (2014). https://www.youtube.com/watch?v=PcYMA27A14A
TSN: Neural Oscillations in Schizophrenia: Perspectives From MEG. (n.d.). http://thesciencenetwork.org/programs/rhythmic-dynamics-and-cognition/peter-uhlhaas
Uhlhaas, P. J., & Singer, W. (2010). Abnormal Neural Oscillations and Synchrony in Schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113. https://doi.org/10.1038/nrn2774
Vargas, C. D., Aballéa, A., Rodrigues, É. C., Reilly, K. T., Mercier, C., Petruzzo, P., Dubernard, J. M., Sirigu, A., & Kaas, J. H. (2009). Re-Emergence of Hand-Muscle Representations in Human Motor Cortex After Hand Allograft. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7197–7202. http://www.jstor.org/stable/40483397?seq=1#page_scan_tab_contents
Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical Control of a Prosthetic Arm for Self-Feeding. Nature, 453(7198), 1098–1101. https://doi.org/10.1038/nature06996
Veraart, C., Raftopoulos, C., Mortimer, J. T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, A., Parrini, S., & Wanet-Defalque, M.-C. (1998). Visual Sensations Produced by Optic Nerve Stimulation Using an Implanted Self-Sizing Spiral Cuff Electrode. Brain Research, 813(1), 181–186. https://doi.org/10.1016/S0006-8993(98)00977-9
Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gatley, S. J., Wong, C., Hitzemann, R., & Pappas, N. R. (1999). Reinforcing Effects of Psychostimulants in Humans Are Associated with Increases in Brain Dopamine and Occupancy of D2Receptors. Journal of Pharmacology and Experimental Therapeutics, 291(1), 409–415. https://web.archive.org/web/20210517131243/http://jpet.aspetjournals.org/content/291/1/409
Volkow, N. D., Wang, G.-J., Fowler, J. S., & Tomasi, D. (2012a). Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology, 52(1), 321–336. https://doi.org/10.1146/annurev-pharmtox-010611-134625
Volkow, N. D., Wang, G.-J., Fowler, J. S., & Tomasi, D. (2012b). Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology, 52(1), 321–336. https://doi.org/10.1146/annurev-pharmtox-010611-134625
Weinstein, A. M. (2011). Pharmacological Treatment of Cannabis Dependence. Current Pharmaceutical Design, 17(14), 1351–1358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171994/
Wichmann, T. (2014). Oscillatory Neuronal Activity Patterns in Parkinson’s Disease. The Biomedical & Life Sciences Collection. https://hstalks.com/t/2820/oscillatory-neuronal-activity-patterns-in-parkinso/
Wichmann, T., & DeLong, M. R. (2006a). Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron, 52(1), 197–204. https://doi.org/10.1016/j.neuron.2006.09.022
Wichmann, T., & DeLong, M. R. (2006b). Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron, 52(1), 197–204. https://doi.org/10.1016/j.neuron.2006.09.022
Wichmann, T., DeLong, M. R., Guridi, J., & Obeso, J. A. (2011). Milestones in Research on the Pathophysiology of Parkinson’s Disease. Movement Disorders, 26(6), 1032–1041. https://doi.org/10.1002/mds.23695
Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., Björklund, A., Lindvall, O., & Langston, J. W. (1992). Bilateral Fetal Mesencephalic Grafting in Two Patients With Parkinsonism Induced by 1-Methyl-4-Phenyl-L,2,3,6-Tetrahydropyridine (MPTP). New England Journal of Medicine, 327(22), 1556–1563. https://doi.org/10.1056/NEJM199211263272203
Williams, C. (2018). The Secret of You. New Scientist, 239(3185), 36–39. https://doi.org/10.1016/S0262-4079(18)31211-9
Zangen, A. (2006). Two Brain Sites for Cannabinoid Reward. Journal of Neuroscience, 26(18), 4901–4907. http://www.jneurosci.org/content/26/18/4901