1.
Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. (Oxford University Press, 2012).
2.
Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. vol. Oxford Psychology Series (Oxford University Press, 2012).
3.
Fuster, J. M. Prefrontal Neurons in Networks of Executive Memory. Brain Research Bulletin 52, 331–336 (2000).
4.
Fuster, J. M. The Prefrontal Cortex - An Update: Time Is of the Essence. Neuron 30, 319–333 (2001).
5.
Fuster, J. M. Upper Processing Stages of the Perception–action Cycle. Trends in Cognitive Sciences 8, 143–145 (2004).
6.
Koechlin, E., Ody, C. & Kouneiher, F. The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science 302, 1181–1185 (2003).
7.
Koechlin, E. & Summerfield, C. An Information Theoretical Approach to Prefrontal Executive Function. Trends in Cognitive Sciences 11, 229–235 (2007).
8.
Ramnani, N. & Owen, A. M. Anterior Prefrontal Cortex: Insights Into Function From Anatomy and Neuroimaging. Nature Reviews Neuroscience 5, 184–194 (2004).
9.
Constantinidis, C. Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex. Journal of Neuroscience 21, 3646–3655 (2001).
10.
Leon, M. I. & Shadlen, M. N. Effect of Expected Reward Magnitude on the Response of Neurons in the Dorsolateral Prefrontal Cortex of the Macaque. Neuron 24, 415–425 (1999).
11.
Quintana, J. From Perception to Action: Temporal Integrative Functions of Prefrontal and Parietal Neurons. Cerebral Cortex 9, 213–221 (1999).
12.
Sakai, K., Rowe, J. B. & Passingham, R. E. Active Maintenance in Prefrontal Area 46 Creates Distractor-Resistant Memory. Nature Neuroscience 5, 479–484 (2002).
13.
Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J. & Passingham, R. E. The Prefrontal Cortex: Response Selection or Maintenance Within Working Memory? Science 288, 1656–1660 (2000).
14.
Ramnani, N. & Passingham, R. E. Changes in the Human Brain During Rhythm Learning. Journal of Cognitive Neuroscience 13, 952–966 (2001).
15.
Passingham, R. E., Weinberger, D. & Petrides, M. Attention to Action. Philosophical Transactions: Biological Sciences 351, 1473–1479 (1996).
16.
Jueptner, M. Anatomy of Motor Learning. I. Frontal Cortex and Attention to Action. Journal of Neurophysiology 77, 1313–1324 (1997).
17.
Shallice, T., Burgess, P. & Robertson, I. The Domain of Supervisory Processes and Temporal Organization of Behaviour [And Discussion]. Philosophical Transactions: Biological Sciences 351, 1405–1412 (1996).
18.
Miller, E. K. The Prefrontal Cortex and Cognitive Control. Nature Reviews Neuroscience 1, 59–65 (2000).
19.
Miller, E. K., Freedman, D. J. & Wallis, J. D. The Prefrontal Cortex: Categories, Concepts and Cognition. Philosophical Transactions: Biological Sciences 357, 1123–1136 (2002).
20.
Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science 291, 312–316 (2001).
21.
Arai, Y. Spatial Orientation of Caloric Nystagmus in Semicircular Canal-Plugged Monkeys. Journal of Neurophysiology 88, 914–928 (2002).
22.
Freedman, D. J. A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization. Journal of Neuroscience 23, 5235–5246 (2003).
23.
Williams, C. The Secret of You. New Scientist 239, 36–39 (2018).
24.
Ramnani, N. The Primate Cortico-Cerebellar System: Anatomy and Function. Nature Reviews Neuroscience 7, 511–522 (2006).
25.
Ramnani, N. Cerebellar Learning. (Elsevier Science & Technology, 2014).
26.
Ramnani, N. Automatic and Controlled Processing in the Corticocerebellar System. in Cerebellar learning (ed. Ramnani, N.) vol. Progress in brain research 255–285 (Elsevier, 2014).
27.
Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and Nonmotor Function. Annual Review of Neuroscience 32, 413–434 (2009).
28.
Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and Nonmotor Function. Annual Review of Neuroscience 32, 413–434 (2009).
29.
Leiner, H. C., Leiner, A. L. & Dow, R. S. Cognitive and Language Functions of the Human Cerebellum. Trends in Neurosciences 16, 444–447 (1993).
30.
The Cerebellum: Connections, Computations and Cognition. Trends in Cognitive Sciences 2, (1998).
31.
Kelly, R. M. & Strick, P. L. Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. The Journal of Neuroscience 23, 8432–8444 (2003).
32.
Middleton, F. A. & Strick, P. L. Dentate Output Channels: Motor and Cognitive Components. The Cerebellum: From Structure to Control Progress in Brain Research 114, 553–566 (1997).
33.
Middleton, F. A. & Strick, P. L. Anatomical Evidence for Cerebellar and Basal Ganglia Involvement in Higher Cognitive Function. Science 266, 458–461 (1994).
34.
Hayter, A. L., Langdon, D. W. & Ramnani, N. Cerebellar Contributions to Working Memory. NeuroImage 36, 943–954 (2007).
35.
Balsters, J. H. et al. Evolution of the Cerebellar Cortex: The Selective Expansion of Prefrontal-Projecting Cerebellar Lobules. NeuroImage 49, 2045–2052 (2010).
36.
Balsters, J. H. & Ramnani, N. Symbolic Representations of Action in the Human Cerebellum. NeuroImage 43, 388–398 (2008).
37.
Balsters, J. H. Cerebellar Plasticity and the Automation of First-Order Rules. Journal of Neuroscience 31, 2305–2312 (2011).
38.
Ramnani, N. The Evolution of Prefrontal Inputs to the Cortico-pontine System: Diffusion Imaging Evidence from Macaque Monkeys and Humans. Cerebral Cortex 16, 811–818 (2005).
39.
Ramnani, N. Frontal Lobe and Posterior Parietal Contributions to the Cortico-Cerebellar System. The Cerebellum 11, 366–383 (2012).
40.
Balsters, J. H., Whelan, C. D., Robertson, I. H. & Ramnani, N. Cerebellum and Cognition: Evidence for the Encoding of Higher Order Rules. Cerebral Cortex 23, 1433–1443 (2013).
41.
O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N. & Johansen-Berg, H. Distinct and Overlapping Functional Zones in the Cerebellum Defined by Resting State Functional Connectivity. Cerebral Cortex 20, 953–965 (2010).
42.
Glickstein, M., May, J. G. & Mercier, B. E. Corticopontine Projection in the Macaque: The Distribution of Labelled Cortical Cells After Large Injections of Horseradish Peroxidase in the Pontine Nuclei. The Journal of Comparative Neurology 235, 343–359 (1985).
43.
Glickstein, M. What Does the Cerebellum Really Do? Current Biology 17, R824–R827 (2007).
44.
Glickstein, M. Motor Skills but Not Cognitive Tasks. Trends in Neurosciences 16, 450–451 (1993).
45.
Glickstein, M., Strata, P. & Voogd, J. Cerebellum: History. Neuroscience 162, 549–559 (2009).
46.
Allen, G., Buxton, R. B., Wong, E. C. & Courchesne, E. Attentional Activation of the Cerebellum Independent of Motor Involvement. Science 275, 1940–1943 (1997).
47.
Stein, J. The Magnocellular Theory of Developmental Dyslexia. Dyslexia 7, 12–36 (2001).
48.
Kirschen, M. P., Chen, S. H. A., Schraedley-Desmond, P. & Desmond, J. E. Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage 24, 462–472 (2005).
49.
Kim, S. G., Uğurbil, K. & Strick, P. L. Activation of a Cerebellar Output Nucleus During Cognitive Processing. Science 265, 949–951 (1994).
50.
Kirschen, M. P., Chen, S. H. A., Schraedley-Desmond, P. & Desmond, J. E. Load- and Practice-Dependent Increases in Cerebro-Cerebellar Activation in Verbal Working Memory: An fMRI Study. NeuroImage 24, 462–472 (2005).
51.
Schmahmann, J. The Cerebellar Cognitive Affective Syndrome. Brain 121, 561–579 (1998).
52.
Budisavljevic, S. & Ramnani, N. Cognitive Deficits From a Cerebellar Tumour: A Historical Case Report From Luria’s Laboratory. Cortex 48, 26–35 (2012).
53.
Baron, J. C., Bousser, M. G., Comar, D., Dequesnoy, N. & Castaigne, P. Crossed Cerebellar Diaschisis: A Remote Functional Suppression Secondary to Supratentorial Infarction in Man. Journal of Cerebral Bloodflow Medicine 1, (1981).
54.
Mai, J. K., Voss, T. & Paxinos, G. 3.1 Surface Views of the Atlas Brain. in Atlas of the human brain (Academic, 2008).
55.
Duvernoy, H. M., Bourgouin, P. & Vannson, J. L. Human Brain: Surface, Three-Dimensional Sectional Anatomy With MRI, and Blood Supply. (Springer, 1999).
56.
Breedlove, S. M. & Watson, N. V. General Principles of Sensory Processing, Touch, and Pain. in Biological Psychology: An Introduction to Behavioral, Cognitive, and Clinical Neuroscience (Sinauer Associates, 2013).
57.
Schieber, M. H. Constraints on Somatotopic Organization in the Primary Motor Cortex. Journal of Neurophysiology 86, 2125–2143 (2001).
58.
Pons, T. P. et al. Massive Cortical Reorganization After Sensory Deafferentation in Adult Macaques. Science 252, 1857–1860 (1991).
59.
Buonomano, D. V. & Merzenich, M. M. Cortical Plasticity: From Synapses to Maps. Annual Review of Neuroscience 21, 149–186 (1998).
60.
Flor, H., Nikolajsen, L. & Staehelin Jensen, T. Phantom Limb Pain: A Case of Maladaptive CNS Plasticity? Nature Reviews Neuroscience 7, 873–881 (2006).
61.
Farnè, A., Roy, A. C., Giraux, P., Dubernard, J. M. & Sirigu, A. Face or Hand, Not Both. Current Biology 12, 1342–1346 (2002).
62.
Vargas, C. D. et al. Re-Emergence of Hand-Muscle Representations in Human Motor Cortex After Hand Allograft. Proceedings of the National Academy of Sciences of the United States of America 106, 7197–7202 (2009).
63.
Lotze, M. Phantom Movements and Pain an fMRI Study in Upper Limb Amputees. Brain 124, 2268–2277 (2001).
64.
Ramachandran, V. The Perception of Phantom Limbs. the D. O. Hebb Lecture. Brain 121, 1603–1630 (1998).
65.
Harris, A. J. Cortical Origin of Pathological Pain. The Lancet 354, 1464–1466 (1999).
66.
Giraux, P., Sirigu, A., Schneider, F. & Dubernard, J.-M. Cortical Reorganization in Motor Cortex After Graft of Both Hands. Nature Neuroscience 4, 691–692 (2001).
67.
Jain, N., Catania, K. C. & Kaas, J. H. Deactivation and Reactivation of Somatosensory Cortex After Dorsal Spinal Cord Injury. Nature 386, 495–498 (1997).
68.
Feldman, D. E. & Brecht, M. Map Plasticity in Somatosensory Cortex. Science 310, 810–815 (2005).
69.
Jones, E. G. Cortical and Subcortical Contributions to Activity-Dependent Plasticity in Primate Somatosensory Cortex. Annual Review of Neuroscience 23, 1–37 (2000).
70.
Kaas, J. H., Merzenich, M. M. & Killackey, H. P. The Reorganization of Somatosensory Cortex Following Peripheral Nerve Damage in Adult and Developing Mammals. Annual Review of Neuroscience 6, 325–356 (1983).
71.
Engel, A. K. & Singer, W. Temporal Binding and the Neural Correlates of Sensory Awareness. Trends in Cognitive Sciences 5, 16–25 (2001).
72.
Fries, P. A Mechanism for Cognitive Dynamics: Neuronal Communication Through Neuronal Coherence. Trends in Cognitive Sciences 9, 474–480 (2005).
73.
Fries, P. Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annual Review of Neuroscience 32, 209–224 (2009).
74.
Litvak, V. et al. EEG and MEG Data Analysis in SPM8. Computational Intelligence and Neuroscience 2011, 1–32 (2011).
75.
Jenkinson, N. & Brown, P. New Insights Into the Relationship Between Dopamine, Beta Oscillations and Motor Function. Trends in Neurosciences 34, 611–618 (2011).
76.
Tallon-Baudry, C. Oscillatory Gamma Activity in Humans and Its Role in Object Representation. Trends in Cognitive Sciences 3, 151–162 (1999).
77.
Uhlhaas, P. J. & Singer, W. Abnormal Neural Oscillations and Synchrony in Schizophrenia. Nature Reviews Neuroscience 11, 100–113 (2010).
78.
Amplitude, Frequency, and Phase. (2014).
79.
Introduction to Brain Waves. (2014).
80.
Neurexpert - The EEG and Gamma Oscillations. (2015).
81.
Sleep Basics:  Wave Form and Sleep Stages. (2013).
82.
Brain Oscillations: A Video Quick Guide. (2012).
83.
Oscillating Neural Network Demonstration. (2015).
84.
Massachusetts Institute of Technology (MIT)  - YouTube.
85.
Wichmann, T. Oscillatory Neuronal Activity Patterns in Parkinson’s Disease. The Biomedical & Life Sciences Collection (2014).
86.
Theta Oscillations and Their Role in Creating Place and Grid Cell Representations | John O’Keefe. (2014).
87.
Jan’s Interview With Wolf Singer (Full-Length) on Vimeo. (2010).
88.
Fundamentals of Neuronal Oscillations and Synchrony. (2015).
89.
Fundamentals of Neuronal Oscillations and Synchrony. (2015).
90.
MEG and Neural Oscillations in ScZ: A Translational Perspective. (2016).
91.
Synchronized Neural Oscillations in the Pathophysiology of Schizophrenia. (2008).
92.
TSN: Neural Oscillations in Schizophrenia: Perspectives From MEG. http://thesciencenetwork.org/programs/rhythmic-dynamics-and-cognition/peter-uhlhaas.
93.
Purves, D. Modulation of Movement by the Basal Ganglia. in Neuroscience (Sinauer, 2008).
94.
Kringelbach, M. L., Jenkinson, N., Owen, S. L. F. & Aziz, T. Z. Translational Principles of Deep Brain Stimulation. Nature Reviews Neuroscience 8, 623–635 (2007).
95.
Gustavsson, A., Wittchen, H.-U., Jönsson, B. & Olesen, J. Cost of Disorders of the Brain in Europe 2010. European Neuropsychopharmacology 21, 718–779 (2011).
96.
Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of Experimental Parkinsonism by Lesions of the Subthalamic Nucleus. Science 249, 1436–1438 (1990).
97.
Fox, S. H. & Brotchie, J. M. The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research Progress in Brain Research 184, 133–157 (2010).
98.
Wichmann, T. & DeLong, M. R. Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron 52, 197–204 (2006).
99.
Bezard, E. & Przedborski, S. A Tale on Animal Models of Parkinson’s Disease. Movement Disorders 26, 993–1002 (2011).
100.
Wichmann, T., DeLong, M. R., Guridi, J. & Obeso, J. A. Milestones in Research on the Pathophysiology of Parkinson’s Disease. Movement Disorders 26, 1032–1041 (2011).
101.
Blandini, F., Armentero, M.-T. & Martignoni, E. The 6-Hydroxydopamine Model: News from the Past. Parkinsonism & Related Disorders 14, S124–S129 (2008).
102.
Hauser, R. A. Levodopa: Past, Present, and Future. European Neurology 62, 1–8 (2009).
103.
Fox, S. H. & Brotchie, J. M. The MPTP-Lesioned Non-Human Primate Models of Parkinson’s Disease. Past, Present, and Future. Recent Advances in Parkinson’S Disease - Translational and Clinical Research Progress in Brain Research 184, 133–157 (2010).
104.
Wichmann, T. & DeLong, M. R. Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders. Neuron 52, 197–204 (2006).
105.
Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science 219, 979–980 (1983).
106.
Patel, N. K. et al. Unilateral Subthalamotomy in the Treatment of Parkinson’s Disease. Brain 126, 1136–1145 (2003).
107.
Krack, P. et al. Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson’s Disease. New England Journal of Medicine 349, 1925–1934 (2003).
108.
Merola, A. et al. Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain 134, 2074–2084 (2011).
109.
Stem Cell Basics: Introduction [Stem Cell Information]. https://web-beta.archive.org/web/20121120094520/https://stemcells.nih.gov/info/basics/basics1.asp.
110.
Stem Cells.
111.
Gould, E. How Widespread Is Adult Neurogenesis in Mammals? Nature Reviews Neuroscience 8, 481–488 (2007).
112.
Gross, C. G. Neurogenesis in the Adult Brain: Death of a Dogma. Nature Reviews Neuroscience 1, 67–73 (2000).
113.
Alvarez-Buylla, A. Neurogenesis in Adult Subventricular Zone. Journal of Neuroscience 22, 629–634 (2002).
114.
Qiang, L. et al. Directed Conversion of Alzheimer’s Disease Patient Skin Fibroblasts into Functional Neurons. Cell 146, 359–371 (2011).
115.
Björklund, L. M. et al. Embryonic Stem Cells Develop Into Functional Dopaminergic Neurons After Transplantation in a Parkinson Rat Model. Proceedings of the National Academy of Sciences of the United States of America 99, 2344–2349 (2002).
116.
Modo, M., Stroemer, R. P., Tang, E., Patel, S. & Hodges, H. Effects of Implantation Site of Stem Cell Grafts on Behavioral Recovery From Stroke Damage. Stroke 33, 2270–2278 (2002).
117.
Bliss, T., Guzman, R., Daadi, M. & Steinberg, G. K. Cell Transplantation Therapy for Stroke. Stroke 38, 817–826 (2007).
118.
Piccini, P. et al. Dopamine Release From Nigral Transplants Visualized in Vivo in a Parkinson’s Patient. Nature Neuroscience 2, 1137–1140 (1999).
119.
Gaillard, A. & Jaber, M. Rewiring the Brain With Cell Transplantation in Parkinson’s Disease. Trends in Neurosciences 34, 124–133 (2011).
120.
Gaillard, A. et al. Reestablishment of Damaged Adult Motor Pathways by Grafted Embryonic Cortical Neurons. Nature Neuroscience 10, 1294–1299 (2007).
121.
Andres, R. H. et al. Human Neural Stem Cells Enhance Structural Plasticity and Axonal Transport in the Ischaemic Brain. Brain 134, 1777–1789 (2011).
122.
Brundin, P., Barker, R. A. & Parmar, M. Neural Grafting in Parkinson’s Disease. in Recent Advances in Parkinson’S Disease - Translational and Clinical Research vol. 184 265–294 (Elsevier, 2010).
123.
Widner, H. et al. Bilateral Fetal Mesencephalic Grafting in Two Patients With Parkinsonism Induced by 1-Methyl-4-Phenyl-L,2,3,6-Tetrahydropyridine (MPTP). New England Journal of Medicine 327, 1556–1563 (1992).
124.
Murphy, T. H. & Corbett, D. Plasticity During Stroke Recovery: From Synapse to Behaviour. Nature Reviews Neuroscience 10, 861–872 (2009).
125.
Krakauer, J. W. Motor Learning: Its Relevance to Stroke Recovery and Neurorehabilitation. Current Opinion in Neurology 19, 84–90 (2006).
126.
Cramer, S. C. Repairing the Human Brain After Stroke: I. Mechanisms of Spontaneous Recovery. Annals of Neurology 63, 272–287 (2008).
127.
Cramer, S. C., Shah, R., Juranek, J., Crafton, K. R. & Le, V. Activity in the Peri-Infarct Rim in Relation to Recovery From Stroke. Stroke 37, 111–115 (2006).
128.
Nudo, R. J. & Milliken, G. W. Reorganization of Movement Representations in Primary Motor Cortex Following Focal Ischemic Infarcts in Adult Squirrel Monkeys. Journal of Neurophysiology 75, 2144–2149 (1996).
129.
Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery After Ischemic Infarct. Science 272, 1791–1794 (1996).
130.
Nudo, R. J. Mechanisms for Recovery of Motor Function Following Cortical Damage. Current Opinion in Neurobiology 16, 638–644 (2006).
131.
Liepert, J. et al. Motor Cortex Plasticity During Constraint-Induced Movement Therapy in Stroke Patients. Neuroscience Letters 250, 5–8 (1998).
132.
Frost, S. B. Reorganization of Remote Cortical Regions After Ischemic Brain Injury: A Potential Substrate for Stroke Recovery. Journal of Neurophysiology 89, 3205–3214 (2003).
133.
Biernaskie, J., Chernenko, G. & Corbett, D. Efficacy of Rehabilitative Experience Declines With Time After Focal Ischemic Brain Injury. Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience 24, 1245–1254 (2004).
134.
Horn, S. D. et al. Stroke Rehabilitation Patients, Practice, and Outcomes: Is Earlier and More Aggressive Therapy Better? Archives of Physical Medicine and Rehabilitation 86, 101–114 (2005).
135.
Salter, K. et al. Impact of Early vs Delayed Admission to Rehabilitation on Functional Outcomes in Persons With Stroke. Journal of Rehabilitation Medicine 38, 113–117 (2006).
136.
Lipsanen, A. & Jolkkonen, J. Experimental Approaches to Study Functional Recovery Following Cerebral Ischemia. Cellular and Molecular Life Sciences 68, 3007–3017 (2011).
137.
McDonald, M. W., Hayward, K. S., Rosbergen, I. C. M., Jeffers, M. S. & Corbett, D. Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Frontiers in Behavioral Neuroscience 12, (2018).
138.
Schwartz, A. B., Cui, X. T., Weber, D. J. & Moran, D. W. Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron 52, 205–220 (2006).
139.
Donoghue, J. P. Bridging the Brain to the World: A Perspective on Neural Interface Systems. Neuron 60, 511–521 (2008).
140.
Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C. & Pascual-Leone, A. Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience 6, 71–77 (2005).
141.
Dagnelie, G. Psychophysical Evaluation for Visual Prosthesis. Annual Review of Biomedical Engineering 10, 339–368 (2008).
142.
Nicolelis, M. A. L. & Lebedev, M. A. Principles of Neural Ensemble Physiology Underlying the Operation of Brain–machine Interfaces. Nature Reviews Neuroscience 10, 530–540 (2009).
143.
O’Doherty, J. E. et al. Active Tactile Exploration Using a Brain–Machine–Brain Interface. Nature 479, 228–231 (2011).
144.
Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S. & Schwartz, A. B. Cortical Control of a Prosthetic Arm for Self-Feeding. Nature 453, 1098–1101 (2008).
145.
Nicolelis, M. A. L. et al. Real-Time Prediction of Hand Trajectory by Ensembles of Cortical Neurons in Primates. Nature 408, 361–365 (2000).
146.
Hochberg, L. R. et al. Neuronal Ensemble Control of Prosthetic Devices by a Human With Tetraplegia. Nature 442, 164–171 (2006).
147.
Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Brain-Machine Interface: Instant Neural Control of a Movement Signal. Nature 416, 141–142 (2002).
148.
Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. L. Real-Time Control of a Robot Arm Using Simultaneously Recorded Neurons in the Motor Cortex. Nature Neuroscience 2, 664–670 (1999).
149.
Schiller, P. H. & Tehovnik, E. J. Visual Prosthesis. Perception 37, 1529–1559 (2008).
150.
Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct Control of Paralysed Muscles by Cortical Neurons. Nature 456, 639–642 (2008).
151.
Dobelle, Wm. H. Artificial Vision for the Blind by Connecting a Television Camera. ASAIO Journal 46, 3–9 (2000).
152.
Brindley, G. S. & Lewin, W. S. The Sensations Produced by Electrical Stimulation of the Visual Cortex. The Journal of Physiology 196, 479–493 (1968).
153.
Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C. & Pascual-Leone, A. Opinion: What Blindness Can Tell Us About Seeing Again: Merging Neuroplasticity and Neuroprostheses. Nature Reviews Neuroscience 6, 71–77 (2005).
154.
Veraart, C. et al. Visual Sensations Produced by Optic Nerve Stimulation Using an Implanted Self-Sizing Spiral Cuff Electrode. Brain Research 813, 181–186 (1998).
155.
Breedlove, S. M. The Chemistry of Behavior. in Biological psychology: an introduction to behavioral, cognitive, and clinical neuroscience (Sinauer Associates, 2013).
156.
Pierce, R. C. & Kumaresan, V. The Mesolimbic Dopamine System: The Final Common Pathway for the Reinforcing Effect of Drugs of Abuse? Neuroscience & Biobehavioral Reviews 30, 215–238 (2006).
157.
Volkow, N. D., Wang, G.-J., Fowler, J. S. & Tomasi, D. Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology 52, 321–336 (2012).
158.
Schultz, W. Getting Formal with Dopamine and Reward. Neuron 36, 241–263 (2002).
159.
Olds, J. Self-Stimulation of the Brain; Its Use to Study Local Effects of Hunger, Sex, and Drugs. Science 127, 315–324 (1958).
160.
Iversen, L. Cannabis and the Brain. Brain 126, 1252–1270 (2003).
161.
Ikemoto, S. & Wise, R. A. Mapping of Chemical Trigger Zones for Reward. Neuropharmacology 47, 190–201 (2004).
162.
Volkow, N. D., Wang, G.-J., Fowler, J. S. & Tomasi, D. Addiction Circuitry in the Human Brain. Annual Review of Pharmacology and Toxicology 52, 321–336 (2012).
163.
Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. R. A. The Dopamine Theory of Addiction: 40 Years of Highs and Lows. Nature Reviews Neuroscience 16, 305–312 (2015).
164.
Olds, J. & Milner, P. Positive Reinforcement Produced by Electrical Stimulation of Septal Area and Other Regions of Rat Brain. Journal of Comparative Psychology 419–427 (1954).
165.
Di Chiara, G. & Imperato, A. Drugs Abused by Humans Preferentially Increase Synaptic Dopamine Concentrations in the Mesolimbic System of Freely Moving Rats. Proceedings of the National Academy of Sciences of the United States of America 85, 5274–5278 (1988).
166.
Goldberg, S. R., Tanda, G. & Munzar, P. Self-Administration Behavior Is Maintained by the Psychoactive Ingredient of Marijuana in Squirrel Monkeys. Nature Neuroscience 3, 1073–1074 (2000).
167.
Justinova, Z., Tanda, G., Redhi, G. H. & Goldberg, S. R. Self-Administration of delta9-Tetrahydrocannabinol (THC) by Drug Naive Squirrel Monkeys. Psychopharmacology 169, 135–140 (2003).
168.
Zangen, A. Two Brain Sites for Cannabinoid Reward. Journal of Neuroscience 26, 4901–4907 (2006).
169.
Volkow, N. D. et al. Reinforcing Effects of Psychostimulants in Humans Are Associated with Increases in Brain Dopamine and Occupancy of D2Receptors. Journal of Pharmacology and Experimental Therapeutics 291, 409–415 (1999).
170.
Lingford-Hughes, A. R., Welch, S., Peters, L. & Nutt, D. J. BAP Updated Guidelines: Evidence-Based Guidelines for the Pharmacological Management of Substance Abuse, Harmful Use, Addiction and Comorbidity: Recommendations From BAP. Journal of Psychopharmacology 26, 899–952 (2012).
171.
Weinstein, A. M. Pharmacological Treatment of Cannabis Dependence. Current pharmaceutical design 17, 1351–1358 (2011).