[1]
J. B. Campbell and R. H. Wynne, Introduction to Remote Sensing. New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=843851
[2]
J. B. Campbell and R. H. Wynne, Introduction to Remote Sensing, 5th ed. New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=843851
[3]
J. R. Jensen, Remote Sensing of the Environment: An Earth Resource Perspective, Second edition., vol. Always learning. Harlow: Pearson Education Limited, 2014.
[4]
J. R. Jensen, Remote Sensing of the Environment: An Earth Resource Perspective, Second edition., vol. Pearson Custom Library. Harlow, Essex, England: Pearson Education Limited, 2014 [Online]. Available: https://www-dawsonera-com.ezproxy01.rhul.ac.uk/abstract/9781292034935
[5]
J. B. Campbell and R. H. Wynne, ‘Electromagnetic Radiation’, in Introduction to Remote Sensing, New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral.proquest.com/lib/rhul/reader.action?docID=843851&ppg=64
[6]
‘Observing The Biosphere From Space [720p] | YouTube’. [Online]. Available: https://www.youtube.com/watch?v=Hn_ffF_KvIU
[7]
‘NASA | Earth Observing Landsat 5 Turns 25 Years Old | YouTube’. [Online]. Available: https://www.youtube.com/watch?v=ArLvDtsewn0
[8]
‘Evolution of Analog to Digital Mapping | YouTube’. [Online]. Available: https://www.youtube.com/watch?v=SB1u6-DDwpU
[9]
J. B. Campbell and R. H. Wynne, ‘Plant Sciences’, in Introduction to Remote Sensing, New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral.proquest.com/lib/rhul/reader.action?docID=843851&ppg=498
[10]
Jonathan A. Foley, Ruth DeFries, Gregory P. Asner, Carol Barford, Gordon Bonan, Stephen R. Carpenter, F. Stuart Chapin, Michael T. Coe, Gretchen C. Daily, Holly K. Gibbs, Joseph H. Helkowski, Tracey Holloway, Erica A. Howard, Christopher J. Kucharik, Chad Monfreda, Jonathan A. Patz, I. Colin Prentice, Navin Ramankutty and Peter K. Snyder, ‘Global Consequences of Land Use’, Science, vol. 309, no. 5734, pp. 570–574, 2005 [Online]. Available: http://www.jstor.org/stable/3842335?seq=1#page_scan_tab_contents
[11]
M. C. Hansen and T. R. Loveland, ‘A Review of Large Area Monitoring of Land Cover Change Using Landsat Data’, Remote Sensing of Environment, vol. 122, pp. 66–74, 2012, doi: 10.1016/j.rse.2011.08.024.
[12]
M. C. Hansen et al., ‘High-Resolution Global Maps of 21st-Century Forest Cover Change’, Science, vol. 342, no. 6160, pp. 850–853, Nov. 2013, doi: 10.1126/science.1244693.
[13]
L. I. W. McKinna, ‘Three Decades of Ocean-Color Remote-Sensing Trichodesmium Spp. in the World’s Oceans: A Review’, Progress in Oceanography, vol. 131, pp. 177–199, 2015, doi: 10.1016/j.pocean.2014.12.013.
[14]
A. Baccini et al., ‘Estimated Carbon Dioxide Emissions From Tropical Deforestation Improved by Carbon-Density Maps’, Nature Climate Change, vol. 2, no. 3, pp. 182–185, 2012.
[15]
Ruth S. DeFries, Richard A. Houghton, Matthew C. Hansen, Christopher B. Field, David Skole and John Townshend, ‘Carbon Emissions from Tropical Deforestation and Regrowth Based on Satellite Observations for the 1980s and 1990s’, Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14256–14261, 2002 [Online]. Available: http://www.jstor.org/stable/3073573
[16]
M. C. Hansen, D. P. Roy, E. Lindquist, B. Adusei, C. O. Justice, and A. Altstatt, ‘A Method for Integrating MODIS And Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin’, Remote Sensing of Environment, vol. 112, no. 5, pp. 2495–2513, 2008, doi: 10.1016/j.rse.2007.11.012.
[17]
S. Kratzer, E. Therese Harvey, and P. Philipson, ‘The Use of Ocean Color Remote Sensing in Integrated Coastal Zone Management—a Case Study From Himmerfjärden, Sweden’, Marine Policy, vol. 43, pp. 29–39, 2014, doi: 10.1016/j.marpol.2013.03.023.
[18]
N. Ramankutty, A. T. Evan, C. Monfreda, and J. A. Foley, ‘Farming the Planet: 1. Geographic Distribution of Global Agricultural Lands in the Year 2000’, Global Biogeochemical Cycles, vol. 22, no. 1, 2008, doi: 10.1029/2007GB002952.
[19]
S. Sterling and A. Ducharne, ‘Comprehensive Data Set of Global Land Cover Change for Land Surface Model Applications’, Global Biogeochemical Cycles, vol. 22, no. 3, p. n/a-n/a, 2008, doi: 10.1029/2007GB002959.
[20]
‘Global Forest Change Earth Engineer Partners | Earth Engine Partners’. [Online]. Available: http://earthenginepartners.appspot.com/science-2013-global-forest
[21]
‘Fifth Assessment Report - Climate Change 2013’. [Online]. Available: http://www.ipcc.ch/report/ar5/wg1/
[22]
J. Gao and Y. Liu, ‘Applications of Remote Sensing, GIS and GPS in Glaciology: A Review’, Progress in Physical Geography, vol. 25, no. 4, pp. 520–540, 2001, doi: 10.1177/030913330102500404.
[23]
J. Linde and S. Grab, ‘The Changing Trajectory of Snow Mapping’, Progress in Physical Geography, vol. 35, no. 2, pp. 139–160, 2011, doi: 10.1177/0309133311399493.
[24]
‘On the Accuracy of Glacier Outlines Derived From Remote-Sensing Data’, Annals of Glaciology, vol. 54, no. 63, pp. 171–182, 2013, doi: 10.5167/uzh-83965. [Online]. Available: http://www.zora.uzh.ch/83965/
[25]
F. Paul and T. Bolch, ‘The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products’, Remote Sensing of Environment, vol. 162, pp. 408–426, 2015, doi: 10.1016/j.rse.2013.07.043.
[26]
D. J. Quincey, R. M. Lucas, S. D. Richardson, N. F. Glasser, M. J. Hambrey, and J. M. Reynolds, ‘Optical Remote Sensing Techniques in High-Mountain Environments: Application to Glacial Hazards’, Progress in Physical Geography, vol. 29, no. 4, pp. 475–505, 2005, doi: 10.1191/0309133305pp456ra.
[27]
‘Challenges and Recommendations in Mapping of Glacier Parameters From Space: Results of the 2008 Global Land Ice Measurements From Space (GLIMS) Workshop, Boulder, Colorado, USA’, Annals of Glaciology, vol. 50, no. 53, pp. 53–69, 2009, doi: 10.5167/uzh-29212. [Online]. Available: http://www.zora.uzh.ch/29212/
[28]
L. M. Andreassen, F. Paul, A. Kääb, and J. E. Hausberg, ‘Landsat-Derived Glacier Inventory for Jotunheimen, Norway, and Deduced Glacier Changes Since the 1930s’, The Cryosphere, vol. 2, no. 2, pp. 131–145, 2008, doi: 10.5194/tc-2-131-2008.
[29]
T. Bolch, B. Menounos, and R. Wheate, ‘Landsat-Based Inventory of Glaciers in Western Canada, 1985–2005’, Remote Sensing of Environment, vol. 114, no. 1, pp. 127–137, 2010, doi: 10.1016/j.rse.2009.08.015.
[30]
H. De Angelis, F. Rau, and P. Skvarca, ‘Snow Zonation on Hielo Patagónico Sur, Southern Patagonia, Derived From Landsat 5 Tm Data’, Global and Planetary Change, vol. 59, no. 1–4, pp. 149–158, 2007, doi: 10.1016/j.gloplacha.2006.11.032.
[31]
M. McMillan et al., ‘Increased Ice Losses From Antarctica Detected by CryoSat-2’, Geophysical Research Letters, vol. 41, no. 11, pp. 3899–3905, 2014, doi: 10.1002/2014GL060111.
[32]
H. D. Pritchard, R. J. Arthern, D. G. Vaughan, and L. A. Edwards, ‘Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets’, Nature, vol. 461, no. 7266, pp. 971–975, 2009, doi: 10.1038/nature08471.
[33]
B. Raup, A. Kääb, S. J. S. Khalsa, M. Beedle, and C. Helm, ‘Remote Sensing and GIS Technology in the Global Land Ice Measurements from Space (GLIMS) Project’, Computers & Geosciences, vol. 33, no. 1, pp. 104–125, 2007, doi: 10.1016/j.cageo.2006.05.015.
[34]
E. Rignot et al., ‘Recent Antarctic Ice Mass Loss From Radar Interferometry and Regional Climate Modelling’, Nature Geoscience, vol. 1, no. 2, pp. 106–110, 2008, doi: 10.1038/ngeo102.
[35]
E. Rignot, J. Mouginot, and B. Scheuchl, ‘Ice Flow of the Antarctic Ice Sheet’, Science, vol. 333, no. 6048, pp. 1427–1430, 2011, doi: 10.1126/science.1208336.
[36]
E. Rignot, S. Jacobs, J. Mouginot, and B. Scheuchl, ‘Ice-Shelf Melting Around Antarctica’, Science, vol. 341, no. 6143, pp. 266–270, 2013, doi: 10.1126/science.1235798.
[37]
‘CryoSat | ESA’. [Online]. Available: http://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat
[38]
‘Global Land Ice Measurements from Space’. [Online]. Available: http://www.glims.org/
[39]
J. B. Campbell, R. H. Wynne, and MyiLibrary, ‘Hydrospheric Sciences’, in Introduction to Remote Sensing, New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral.proquest.com/lib/rhul/reader.action?docID=843851&ppg=582
[40]
M. Fingas and C. Brown, ‘Review of Oil Spill Remote Sensing’, Marine Pollution Bulletin, vol. 83, no. 1, pp. 9–23, 2014, doi: 10.1016/j.marpolbul.2014.03.059.
[41]
G. G. Gawarkiewicz, R. E. Todd, A. J. Plueddemann, M. Andres, and J. P. Manning, ‘Direct Interaction Between the Gulf Stream and the Shelfbreak South of New England’, Scientific Reports, vol. 2, 2012, doi: 10.1038/srep00553.
[42]
F. Karim et al., ‘Assessing the Impacts of Climate Change and Dams on Floodplain Inundation and Wetland Connectivity in the Wet–dry Tropics of Northern Australia’, Journal of Hydrology, vol. 522, pp. 80–94, 2015, doi: 10.1016/j.jhydrol.2014.12.005.
[43]
V. Klemas and X.-H. Yan, ‘Subsurface and Deeper Ocean Remote Sensing From Satellites: An Overview and New Results’, Progress in Oceanography, vol. 122, pp. 1–9, 2014, doi: 10.1016/j.pocean.2013.11.010.
[44]
I. Kozlov, I. Dailidienė, A. Korosov, V. Klemas, and T. Mingėlaitė, ‘MODIS-Based Sea Surface Temperature of the Baltic Sea Curonian Lagoon’, Journal of Marine Systems, vol. 129, pp. 157–165, 2014, doi: 10.1016/j.jmarsys.2012.05.011.
[45]
C. B. Mouw et al., ‘Aquatic Color Radiometry Remote Sensing of Coastal and Inland Waters: Challenges and Recommendations for Future Satellite Missions’, Remote Sensing of Environment, vol. 160, pp. 15–30, 2015, doi: 10.1016/j.rse.2015.02.001.
[46]
A. Ogilvie et al., ‘Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data’, Journal of Hydrology, vol. 523, pp. 368–383, 2015, doi: 10.1016/j.jhydrol.2015.01.036.
[47]
S. C. J. Palmer, T. Kutser, and P. D. Hunter, ‘Remote Sensing of Inland Waters: Challenges, Progress and Future Directions’, Remote Sensing of Environment, vol. 157, pp. 1–8, 2015, doi: 10.1016/j.rse.2014.09.021.
[48]
A. Reinart and M. Reinhold, ‘Mapping Surface Temperature in Large Lakes With MODIS Data’, Remote Sensing of Environment, vol. 112, no. 2, pp. 603–611, 2008, doi: 10.1016/j.rse.2007.05.015.
[49]
J. B. Campbell and R. H. Wynne, Introduction to Remote Sensing, 5th ed. New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=843851
[50]
J. B. Campbell and R. H. Wynne, Introduction to Remote Sensing. New York: Guilford Press, 2011 [Online]. Available: https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=843851
[51]
‘Direct Acquisition of Data: Airborne Laser Scanning’. [Online]. Available: http://geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.1.4_LiDAR.pdf
[52]
‘DEMs of Difference. British Society for Geomorphology’. [Online]. Available: http://geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.3.2_DEMsOfDifference.pdf
[53]
J. J. Roering et al., ‘“You are HERE”: Connecting the Dots With Airborne Lidar for Geomorphic Fieldwork’, Geomorphology, vol. 200, pp. 172–183, 2013, doi: 10.1016/j.geomorph.2013.04.009.
[54]
J. U. H. Eitel et al., ‘Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences’, Remote Sensing of Environment, vol. 186, pp. 372–392, 2016, doi: 10.1016/j.rse.2016.08.018.
[55]
B. Notebaert, G. Verstraeten, G. Govers, and J. Poesen, ‘Qualitative and Quantitative Applications of LiDAR Imagery in Fluvial Geomorphology’, Earth Surface Processes and Landforms, vol. 34, no. 2, pp. 217–231, 2009, doi: 10.1002/esp.1705.
[56]
M. J. Smith and C. D. Clark, ‘Methods for the Visualization of Digital Elevation Models for Landform Mapping’, Earth Surface Processes and Landforms, vol. 30, no. 7, pp. 885–900, 2005, doi: 10.1002/esp.1210.
[57]
J. U. H. Eitel et al., ‘Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences’, Remote Sensing of Environment, vol. 186, pp. 372–392, 2016, doi: 10.1016/j.rse.2016.08.018.
[58]
J. J. Roering et al., ‘“You are HERE”: Connecting the Dots With Airborne Lidar for Geomorphic Fieldwork’, Geomorphology, vol. 200, pp. 172–183, Oct. 2013, doi: 10.1016/j.geomorph.2013.04.009.
[59]
A. Crapoulet, A. Héquette, D. Marin, F. Levoy, and P. Bretel, ‘Variations in the Response of the Dune Coast of Northern France to Major Storms as a Function of Available Beach Sediment Volume’, Earth Surface Processes and Landforms, vol. 42, no. 11, pp. 1603–1622, 2017, doi: 10.1002/esp.4098.
[60]
N. R. Goodwin, J. D. Armston, J. Muir, and I. Stiller, ‘Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study From Aratula, Queensland’, Geomorphology, vol. 282, pp. 195–208, 2017, doi: 10.1016/j.geomorph.2017.01.001.
[61]
J. Mäkinen, K. Kajuutti, J.-P. Palmu, A. Ojala, and E. Ahokangas, ‘Triangular-Shaped Landforms Reveal Subglacial Drainage Routes in Sw Finland’, Quaternary Science Reviews, vol. 164, pp. 37–53, 2017, doi: 10.1016/j.quascirev.2017.03.024.
[62]
A. Nelson and K. Dubé, ‘Channel Response to an Extreme Flood and Sediment Pulse in a Mixed Bedrock and Gravel-Bed River’, Earth Surface Processes and Landforms, vol. 41, no. 2, pp. 178–195, 2016, doi: 10.1002/esp.3843.
[63]
J. Obu et al., ‘Coastal Erosion and Mass Wasting Along the Canadian Beaufort Sea Based on Annual Airborne LiDAR Elevation Data’, Geomorphology, vol. 293, pp. 331–346, 2017, doi: 10.1016/j.geomorph.2016.02.014.
[64]
C. Robb, I. Willis, N. Arnold, and S. Guðmundsson, ‘A Semi-Automated Method for Mapping Glacial Geomorphology Tested at Breiðamerkurjökull, Iceland’, Remote Sensing of Environment, vol. 163, pp. 80–90, 2015, doi: 10.1016/j.rse.2015.03.007.
[65]
M. Abalharth, M. A. Hassan, B. Klinkenberg, V. Leung, and R. McCleary, ‘Using LiDAR to Characterize Logjams in Lowland Rivers’, Geomorphology, vol. 246, pp. 531–541, 2015, doi: 10.1016/j.geomorph.2015.06.036.
[66]
A. Breckenridge, ‘The Tintah-Campbell Gap and Implications for Glacial Lake Agassiz Drainage During the Younger Dryas Cold Interval’, Quaternary Science Reviews, vol. 117, pp. 124–134, 2015, doi: 10.1016/j.quascirev.2015.04.009.
[67]
J. M. Bull, H. Miller, D. M. Gravley, D. Costello, D. C. H. Hikuroa, and J. K. Dix, ‘Assessing Debris Flows Using LIDAR Differencing: 18 May 2005 Matata Event, New Zealand’, Geomorphology, vol. 124, no. 1–2, pp. 75–84, 2010, doi: 10.1016/j.geomorph.2010.08.011.
[68]
J. Croke, P. Todd, C. Thompson, F. Watson, R. Denham, and G. Khanal, ‘The Use of Multi Temporal LiDAR to Assess Basin-Scale Erosion and Deposition Following the Catastrophic January 2011 Lockyer Flood, SE Queensland, Australia’, Geomorphology, vol. 184, pp. 111–126, 2013, doi: 10.1016/j.geomorph.2012.11.023.
[69]
R. C. De Rose and L. R. Basher, ‘Measurement of River Bank and Cliff Erosion From Sequential LIDAR and Historical Aerial Photography’, Geomorphology, vol. 126, no. 1–2, pp. 132–147, 2011, doi: 10.1016/j.geomorph.2010.10.037.
[70]
T. P. F. Dowlinga, ‘Morphometry and Core Type of Streamlined Bedforms in Southern Sweden From High Resolution LiDAR’, Morphometry and Core Type of Streamlined Bedforms in Southern Sweden From High Resolution LiDAR, vol. 236, pp. 54–63, doi: https://doi.org/10.1016/j.geomorph.2015.02.018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169555X15001014
[71]
Z. Lin, H. Kaneda, S. Mukoyama, N. Asada, and T. Chiba, ‘Detection of Subtle Tectonic–geomorphic Features in Densely Forested Mountains by Very High-Resolution Airborne LiDAR Survey’, Geomorphology, vol. 182, pp. 104–115, 2013, doi: 10.1016/j.geomorph.2012.11.001.
[72]
Benjamin H. Mackey, Joshua J. Roering and Michael P. Lamb, ‘Proceedings of the National Academy of Sciences of the United States of America’, vol. 108, no. 47, pp. 18905–18909, 2011 [Online]. Available: http://www.jstor.org/stable/23058621
[73]
A. Pedersen, G. Kocurek, D. Mohrig, and V. Smith, ‘Dune Deformation in a Multi-Directional Wind Regime: White Sands Dune Field, New Mexico’, Earth Surface Processes and Landforms, vol. 40, no. 7, pp. 925–941, 2015, doi: 10.1002/esp.3700.
[74]
A. D. Reddya et al., ‘Quantifying Soil Carbon Loss and Uncertainty From a Peatland Wildfire Using Multi-Temporal LiDAR’, Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR, vol. 170, pp. 306–316, doi: https://doi.org/10.1016/j.rse.2015.09.017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0034425715301401
[75]
A. Richter, D. Faust, and H.-G. Maas, ‘Dune Cliff Erosion and Beach Width Change at the Northern and Southern Spits of Sylt Detected With Multi-Temporal Lidar’, CATENA, vol. 103, pp. 103–111, Apr. 2013, doi: 10.1016/j.catena.2011.02.007.
[76]
B. C. Salcher, R. Hinsch, and M. Wagreich, ‘High-Resolution Mapping of Glacial Landforms in the North Alpine Foreland, Austria’, Geomorphology, vol. 122, no. 3–4, pp. 283–293, 2010, doi: 10.1016/j.geomorph.2009.09.037.