1.
Campbell JB, Wynne RH. Introduction to Remote Sensing. Guilford Press; 2011. https://ebookcentral-proquest-com.ezproxy01.rhul.ac.uk/lib/rhul/detail.action?docID=843851
2.
Campbell JB, Wynne RH. Introduction to Remote Sensing. 5th ed. Guilford Press; 2011. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=843851
3.
Jensen JR. Remote Sensing of the Environment: An Earth Resource Perspective. Vol Always learning. Second edition. Pearson Education Limited; 2014.
4.
Jensen JR. Remote Sensing of the Environment: An Earth Resource Perspective. Vol Pearson Custom Library. Second edition. Pearson Education Limited; 2014. https://www-dawsonera-com.ezproxy01.rhul.ac.uk/abstract/9781292034935
5.
Campbell JB, Wynne RH. Electromagnetic Radiation. In: Introduction to Remote Sensing. Guilford Press; 2011. https://ebookcentral.proquest.com/lib/rhul/reader.action?docID=843851&ppg=64
6.
Observing The Biosphere From Space [720p] | YouTube. https://www.youtube.com/watch?v=Hn_ffF_KvIU
7.
NASA | Earth Observing Landsat 5 Turns 25 Years Old | YouTube. https://www.youtube.com/watch?v=ArLvDtsewn0
8.
Evolution of Analog to Digital Mapping | YouTube. https://www.youtube.com/watch?v=SB1u6-DDwpU
9.
Campbell JB, Wynne RH. Plant Sciences. In: Introduction to Remote Sensing. Guilford Press; 2011. https://ebookcentral.proquest.com/lib/rhul/reader.action?docID=843851&ppg=498
10.
Jonathan A. Foley, Ruth DeFries, Gregory P. Asner, Carol Barford, Gordon Bonan, Stephen R. Carpenter, F. Stuart Chapin, Michael T. Coe, Gretchen C. Daily, Holly K. Gibbs, Joseph H. Helkowski, Tracey Holloway, Erica A. Howard, Christopher J. Kucharik, Chad Monfreda, Jonathan A. Patz, I. Colin Prentice, Navin Ramankutty and Peter K. Snyder. Global Consequences of Land Use. Science. 2005;309(5734):570-574. http://www.jstor.org/stable/3842335?seq=1#page_scan_tab_contents
11.
Hansen MC, Loveland TR. A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sensing of Environment. 2012;122:66-74. doi:10.1016/j.rse.2011.08.024
12.
Hansen MC, Potapov PV, Moore R, et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 2013;342(6160):850-853. doi:10.1126/science.1244693
13.
McKinna LIW. Three Decades of Ocean-Color Remote-Sensing Trichodesmium Spp. in the World’s Oceans: A Review. Progress in Oceanography. 2015;131:177-199. doi:10.1016/j.pocean.2014.12.013
14.
Baccini A, Goetz SJ, Walker WS, et al. Estimated Carbon Dioxide Emissions From Tropical Deforestation Improved by Carbon-Density Maps. Nature Climate Change. 2012;2(3):182-185.
15.
Ruth S. DeFries, Richard A. Houghton, Matthew C. Hansen, Christopher B. Field, David Skole and John Townshend. Carbon Emissions from Tropical Deforestation and Regrowth Based on Satellite Observations for the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(22):14256-14261. http://www.jstor.org/stable/3073573
16.
Hansen MC, Roy DP, Lindquist E, Adusei B, Justice CO, Altstatt A. A Method for Integrating MODIS And Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin. Remote Sensing of Environment. 2008;112(5):2495-2513. doi:10.1016/j.rse.2007.11.012
17.
Kratzer S, Therese Harvey E, Philipson P. The Use of Ocean Color Remote Sensing in Integrated Coastal Zone Management—a Case Study From Himmerfjärden, Sweden. Marine Policy. 2014;43:29-39. doi:10.1016/j.marpol.2013.03.023
18.
Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the Planet: 1. Geographic Distribution of Global Agricultural Lands in the Year 2000. Global Biogeochemical Cycles. 2008;22(1). doi:10.1029/2007GB002952
19.
Sterling S, Ducharne A. Comprehensive Data Set of Global Land Cover Change for Land Surface Model Applications. Global Biogeochemical Cycles. 2008;22(3):n/a-n/a. doi:10.1029/2007GB002959
20.
Global Forest Change Earth Engineer Partners | Earth Engine Partners. http://earthenginepartners.appspot.com/science-2013-global-forest
21.
Fifth Assessment Report - Climate Change 2013. http://www.ipcc.ch/report/ar5/wg1/
22.
Gao J, Liu Y. Applications of Remote Sensing, GIS and GPS in Glaciology: A Review. Progress in Physical Geography. 2001;25(4):520-540. doi:10.1177/030913330102500404
23.
Linde J, Grab S. The Changing Trajectory of Snow Mapping. Progress in Physical Geography. 2011;35(2):139-160. doi:10.1177/0309133311399493
24.
On the Accuracy of Glacier Outlines Derived From Remote-Sensing Data. Annals of Glaciology. 2013;54(63):171-182. doi:10.5167/uzh-83965
25.
Paul F, Bolch T. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sensing of Environment. 2015;162:408-426. doi:10.1016/j.rse.2013.07.043
26.
Quincey DJ, Lucas RM, Richardson SD, Glasser NF, Hambrey MJ, Reynolds JM. Optical Remote Sensing Techniques in High-Mountain Environments: Application to Glacial Hazards. Progress in Physical Geography. 2005;29(4):475-505. doi:10.1191/0309133305pp456ra
27.
Challenges and Recommendations in Mapping of Glacier Parameters From Space: Results of the 2008 Global Land Ice Measurements From Space (GLIMS) Workshop, Boulder, Colorado, USA. Annals of Glaciology. 2009;50(53):53-69. doi:10.5167/uzh-29212
28.
Andreassen LM, Paul F, Kääb A, Hausberg JE. Landsat-Derived Glacier Inventory for Jotunheimen, Norway, and Deduced Glacier Changes Since the 1930s. The Cryosphere. 2008;2(2):131-145. doi:10.5194/tc-2-131-2008
29.
Bolch T, Menounos B, Wheate R. Landsat-Based Inventory of Glaciers in Western Canada, 1985–2005. Remote Sensing of Environment. 2010;114(1):127-137. doi:10.1016/j.rse.2009.08.015
30.
De Angelis H, Rau F, Skvarca P. Snow Zonation on Hielo Patagónico Sur, Southern Patagonia, Derived From Landsat 5 Tm Data. Global and Planetary Change. 2007;59(1-4):149-158. doi:10.1016/j.gloplacha.2006.11.032
31.
McMillan M, Shepherd A, Sundal A, et al. Increased Ice Losses From Antarctica Detected by CryoSat-2. Geophysical Research Letters. 2014;41(11):3899-3905. doi:10.1002/2014GL060111
32.
Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA. Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets. Nature. 2009;461(7266):971-975. doi:10.1038/nature08471
33.
Raup B, Kääb A, Khalsa SJS, Beedle M, Helm C. Remote Sensing and GIS Technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computers & Geosciences. 2007;33(1):104-125. doi:10.1016/j.cageo.2006.05.015
34.
Rignot E, Bamber JL, van den Broeke MR, et al. Recent Antarctic Ice Mass Loss From Radar Interferometry and Regional Climate Modelling. Nature Geoscience. 2008;1(2):106-110. doi:10.1038/ngeo102
35.
Rignot E, Mouginot J, Scheuchl B. Ice Flow of the Antarctic Ice Sheet. Science. 2011;333(6048):1427-1430. doi:10.1126/science.1208336
36.
Rignot E, Jacobs S, Mouginot J, Scheuchl B. Ice-Shelf Melting Around Antarctica. Science. 2013;341(6143):266-270. doi:10.1126/science.1235798
37.
CryoSat | ESA. http://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat
38.
Global Land Ice Measurements from Space. http://www.glims.org/
39.
Campbell JB, Wynne RH, MyiLibrary. Hydrospheric Sciences. In: Introduction to Remote Sensing. Guilford Press; 2011. https://ebookcentral.proquest.com/lib/rhul/reader.action?docID=843851&ppg=582
40.
Fingas M, Brown C. Review of Oil Spill Remote Sensing. Marine Pollution Bulletin. 2014;83(1):9-23. doi:10.1016/j.marpolbul.2014.03.059
41.
Gawarkiewicz GG, Todd RE, Plueddemann AJ, Andres M, Manning JP. Direct Interaction Between the Gulf Stream and the Shelfbreak South of New England. Scientific Reports. 2012;2. doi:10.1038/srep00553
42.
Karim F, Dutta D, Marvanek S, et al. Assessing the Impacts of Climate Change and Dams on Floodplain Inundation and Wetland Connectivity in the Wet–dry Tropics of Northern Australia. Journal of Hydrology. 2015;522:80-94. doi:10.1016/j.jhydrol.2014.12.005
43.
Klemas V, Yan XH. Subsurface and Deeper Ocean Remote Sensing From Satellites: An Overview and New Results. Progress in Oceanography. 2014;122:1-9. doi:10.1016/j.pocean.2013.11.010
44.
Kozlov I, Dailidienė I, Korosov A, Klemas V, Mingėlaitė T. MODIS-Based Sea Surface Temperature of the Baltic Sea Curonian Lagoon. Journal of Marine Systems. 2014;129:157-165. doi:10.1016/j.jmarsys.2012.05.011
45.
Mouw CB, Greb S, Aurin D, et al. Aquatic Color Radiometry Remote Sensing of Coastal and Inland Waters: Challenges and Recommendations for Future Satellite Missions. Remote Sensing of Environment. 2015;160:15-30. doi:10.1016/j.rse.2015.02.001
46.
Ogilvie A, Belaud G, Delenne C, et al. Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data. Journal of Hydrology. 2015;523:368-383. doi:10.1016/j.jhydrol.2015.01.036
47.
Palmer SCJ, Kutser T, Hunter PD. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sensing of Environment. 2015;157:1-8. doi:10.1016/j.rse.2014.09.021
48.
Reinart A, Reinhold M. Mapping Surface Temperature in Large Lakes With MODIS Data. Remote Sensing of Environment. 2008;112(2):603-611. doi:10.1016/j.rse.2007.05.015
49.
Campbell JB, Wynne RH. Introduction to Remote Sensing. 5th ed. Guilford Press; 2011. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=843851
50.
Campbell JB, Wynne RH. Introduction to Remote Sensing. Guilford Press; 2011. https://ebookcentral.proquest.com/lib/rhul/detail.action?docID=843851
51.
Direct Acquisition of Data: Airborne Laser Scanning. http://geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.1.4_LiDAR.pdf
52.
DEMs of Difference. British Society for Geomorphology. http://geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.3.2_DEMsOfDifference.pdf
53.
Roering JJ, Mackey BH, Marshall JA, et al. ‘You are HERE’: Connecting the Dots With Airborne Lidar for Geomorphic Fieldwork. Geomorphology. 2013;200:172-183. doi:10.1016/j.geomorph.2013.04.009
54.
Eitel JUH, Höfle B, Vierling LA, et al. Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences. Remote Sensing of Environment. 2016;186:372-392. doi:10.1016/j.rse.2016.08.018
55.
Notebaert B, Verstraeten G, Govers G, Poesen J. Qualitative and Quantitative Applications of LiDAR Imagery in Fluvial Geomorphology. Earth Surface Processes and Landforms. 2009;34(2):217-231. doi:10.1002/esp.1705
56.
Smith MJ, Clark CD. Methods for the Visualization of Digital Elevation Models for Landform Mapping. Earth Surface Processes and Landforms. 2005;30(7):885-900. doi:10.1002/esp.1210
57.
Eitel JUH, Höfle B, Vierling LA, et al. Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences. Remote Sensing of Environment. 2016;186:372-392. doi:10.1016/j.rse.2016.08.018
58.
Roering JJ, Mackey BH, Marshall JA, et al. ‘You are HERE’: Connecting the Dots With Airborne Lidar for Geomorphic Fieldwork. Geomorphology. 2013;200:172-183. doi:10.1016/j.geomorph.2013.04.009
59.
Crapoulet A, Héquette A, Marin D, Levoy F, Bretel P. Variations in the Response of the Dune Coast of Northern France to Major Storms as a Function of Available Beach Sediment Volume. Earth Surface Processes and Landforms. 2017;42(11):1603-1622. doi:10.1002/esp.4098
60.
Goodwin NR, Armston JD, Muir J, Stiller I. Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study From Aratula, Queensland. Geomorphology. 2017;282:195-208. doi:10.1016/j.geomorph.2017.01.001
61.
Mäkinen J, Kajuutti K, Palmu JP, Ojala A, Ahokangas E. Triangular-Shaped Landforms Reveal Subglacial Drainage Routes in Sw Finland. Quaternary Science Reviews. 2017;164:37-53. doi:10.1016/j.quascirev.2017.03.024
62.
Nelson A, Dubé K. Channel Response to an Extreme Flood and Sediment Pulse in a Mixed Bedrock and Gravel-Bed River. Earth Surface Processes and Landforms. 2016;41(2):178-195. doi:10.1002/esp.3843
63.
Obu J, Lantuit H, Grosse G, et al. Coastal Erosion and Mass Wasting Along the Canadian Beaufort Sea Based on Annual Airborne LiDAR Elevation Data. Geomorphology. 2017;293:331-346. doi:10.1016/j.geomorph.2016.02.014
64.
Robb C, Willis I, Arnold N, Guðmundsson S. A Semi-Automated Method for Mapping Glacial Geomorphology Tested at Breiðamerkurjökull, Iceland. Remote Sensing of Environment. 2015;163:80-90. doi:10.1016/j.rse.2015.03.007
65.
Abalharth M, Hassan MA, Klinkenberg B, Leung V, McCleary R. Using LiDAR to Characterize Logjams in Lowland Rivers. Geomorphology. 2015;246:531-541. doi:10.1016/j.geomorph.2015.06.036
66.
Breckenridge A. The Tintah-Campbell Gap and Implications for Glacial Lake Agassiz Drainage During the Younger Dryas Cold Interval. Quaternary Science Reviews. 2015;117:124-134. doi:10.1016/j.quascirev.2015.04.009
67.
Bull JM, Miller H, Gravley DM, Costello D, Hikuroa DCH, Dix JK. Assessing Debris Flows Using LIDAR Differencing: 18 May 2005 Matata Event, New Zealand. Geomorphology. 2010;124(1-2):75-84. doi:10.1016/j.geomorph.2010.08.011
68.
Croke J, Todd P, Thompson C, Watson F, Denham R, Khanal G. The Use of Multi Temporal LiDAR to Assess Basin-Scale Erosion and Deposition Following the Catastrophic January 2011 Lockyer Flood, SE Queensland, Australia. Geomorphology. 2013;184:111-126. doi:10.1016/j.geomorph.2012.11.023
69.
De Rose RC, Basher LR. Measurement of River Bank and Cliff Erosion From Sequential LIDAR and Historical Aerial Photography. Geomorphology. 2011;126(1-2):132-147. doi:10.1016/j.geomorph.2010.10.037
70.
Dowlinga TPF. Morphometry and Core Type of Streamlined Bedforms in Southern Sweden From High Resolution LiDAR. Morphometry and Core Type of Streamlined Bedforms in Southern Sweden From High Resolution LiDAR. 236:54-63. doi:https://doi.org/10.1016/j.geomorph.2015.02.018
71.
Lin Z, Kaneda H, Mukoyama S, Asada N, Chiba T. Detection of Subtle Tectonic–geomorphic Features in Densely Forested Mountains by Very High-Resolution Airborne LiDAR Survey. Geomorphology. 2013;182:104-115. doi:10.1016/j.geomorph.2012.11.001
72.
Benjamin H. Mackey, Joshua J. Roering and Michael P. Lamb. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(47):18905-18909. http://www.jstor.org/stable/23058621
73.
Pedersen A, Kocurek G, Mohrig D, Smith V. Dune Deformation in a Multi-Directional Wind Regime: White Sands Dune Field, New Mexico. Earth Surface Processes and Landforms. 2015;40(7):925-941. doi:10.1002/esp.3700
74.
Reddya AD, Hawbakerb TJ, Wursterc F, et al. Quantifying Soil Carbon Loss and Uncertainty From a Peatland Wildfire Using Multi-Temporal LiDAR. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. 170:306-316. doi:https://doi.org/10.1016/j.rse.2015.09.017
75.
Richter A, Faust D, Maas HG. Dune Cliff Erosion and Beach Width Change at the Northern and Southern Spits of Sylt Detected With Multi-Temporal Lidar. CATENA. 2013;103:103-111. doi:10.1016/j.catena.2011.02.007
76.
Salcher BC, Hinsch R, Wagreich M. High-Resolution Mapping of Glacial Landforms in the North Alpine Foreland, Austria. Geomorphology. 2010;122(3-4):283-293. doi:10.1016/j.geomorph.2009.09.037