[1]
Abalharth, M. et al. 2015. Using LiDAR to Characterize Logjams in Lowland Rivers. Geomorphology. 246, (2015), 531–541. DOI:https://doi.org/10.1016/j.geomorph.2015.06.036.
[2]
Andreassen, L.M. et al. 2008. Landsat-Derived Glacier Inventory for Jotunheimen, Norway, and Deduced Glacier Changes Since the 1930s. The Cryosphere. 2, 2 (2008), 131–145. DOI:https://doi.org/10.5194/tc-2-131-2008.
[3]
Baccini, A. et al. 2012. Estimated Carbon Dioxide Emissions From Tropical Deforestation Improved by Carbon-Density Maps. Nature Climate Change. 2, 3 (2012), 182–185.
[4]
Benjamin H. Mackey, Joshua J. Roering and Michael P. Lamb 2011. Proceedings of the National Academy of Sciences of the United States of America. 108, 47 (2011), 18905–18909.
[5]
Bolch, T. et al. 2010. Landsat-Based Inventory of Glaciers in Western Canada, 1985–2005. Remote Sensing of Environment. 114, 1 (2010), 127–137. DOI:https://doi.org/10.1016/j.rse.2009.08.015.
[6]
Breckenridge, A. 2015. The Tintah-Campbell Gap and Implications for Glacial Lake Agassiz Drainage During the Younger Dryas Cold Interval. Quaternary Science Reviews. 117, (2015), 124–134. DOI:https://doi.org/10.1016/j.quascirev.2015.04.009.
[7]
Bull, J.M. et al. 2010. Assessing Debris Flows Using LIDAR Differencing: 18 May 2005 Matata Event, New Zealand. Geomorphology. 124, 1–2 (2010), 75–84. DOI:https://doi.org/10.1016/j.geomorph.2010.08.011.
[8]
Campbell, J.B. et al. 2011. Hydrospheric Sciences. Introduction to Remote Sensing. Guilford Press.
[9]
Campbell, J.B. and Wynne, R.H. 2011. Electromagnetic Radiation. Introduction to Remote Sensing. Guilford Press.
[10]
Campbell, J.B. and Wynne, R.H. 2011. Introduction to Remote Sensing. Guilford Press.
[11]
Campbell, J.B. and Wynne, R.H. 2011. Introduction to Remote Sensing. Guilford Press.
[12]
Campbell, J.B. and Wynne, R.H. 2011. Introduction to Remote Sensing. Guilford Press.
[13]
Campbell, J.B. and Wynne, R.H. 2011. Introduction to Remote Sensing. Guilford Press.
[14]
Campbell, J.B. and Wynne, R.H. 2011. Plant Sciences. Introduction to Remote Sensing. Guilford Press.
[15]
Crapoulet, A. et al. 2017. Variations in the Response of the Dune Coast of Northern France to Major Storms as a Function of Available Beach Sediment Volume. Earth Surface Processes and Landforms. 42, 11 (2017), 1603–1622. DOI:https://doi.org/10.1002/esp.4098.
[16]
Croke, J. et al. 2013. The Use of Multi Temporal LiDAR to Assess Basin-Scale Erosion and Deposition Following the Catastrophic January 2011 Lockyer Flood, SE Queensland, Australia. Geomorphology. 184, (2013), 111–126. DOI:https://doi.org/10.1016/j.geomorph.2012.11.023.
[17]
CryoSat | ESA: http://www.esa.int/Our_Activities/Observing_the_Earth/CryoSat.
[18]
De Angelis, H. et al. 2007. Snow Zonation on Hielo Patagónico Sur, Southern Patagonia, Derived From Landsat 5 Tm Data. Global and Planetary Change. 59, 1–4 (2007), 149–158. DOI:https://doi.org/10.1016/j.gloplacha.2006.11.032.
[19]
De Rose, R.C. and Basher, L.R. 2011. Measurement of River Bank and Cliff Erosion From Sequential LIDAR and Historical Aerial Photography. Geomorphology. 126, 1–2 (2011), 132–147. DOI:https://doi.org/10.1016/j.geomorph.2010.10.037.
[20]
Dowlinga, T.P.F. Morphometry and Core Type of Streamlined Bedforms in Southern Sweden From High Resolution LiDAR. Morphometry and Core Type of Streamlined Bedforms in Southern Sweden From High Resolution LiDAR. 236, 54–63. DOI:https://doi.org/https://doi.org/10.1016/j.geomorph.2015.02.018.
[21]
Eitel, J.U.H. et al. 2016. Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences. Remote Sensing of Environment. 186, (2016), 372–392. DOI:https://doi.org/10.1016/j.rse.2016.08.018.
[22]
Eitel, J.U.H. et al. 2016. Beyond 3-D: The New Spectrum of Lidar Applications for Earth and Ecological Sciences. Remote Sensing of Environment. 186, (2016), 372–392. DOI:https://doi.org/10.1016/j.rse.2016.08.018.
[23]
Fifth Assessment Report - Climate Change 2013: http://www.ipcc.ch/report/ar5/wg1/.
[24]
Fingas, M. and Brown, C. 2014. Review of Oil Spill Remote Sensing. Marine Pollution Bulletin. 83, 1 (2014), 9–23. DOI:https://doi.org/10.1016/j.marpolbul.2014.03.059.
[25]
Gao, J. and Liu, Y. 2001. Applications of Remote Sensing, GIS and GPS in Glaciology: A Review. Progress in Physical Geography. 25, 4 (2001), 520–540. DOI:https://doi.org/10.1177/030913330102500404.
[26]
Gawarkiewicz, G.G. et al. 2012. Direct Interaction Between the Gulf Stream and the Shelfbreak South of New England. Scientific Reports. 2, (2012). DOI:https://doi.org/10.1038/srep00553.
[27]
Global Forest Change Earth Engineer Partners | Earth Engine Partners: http://earthenginepartners.appspot.com/science-2013-global-forest.
[28]
Global Land Ice Measurements from Space: http://www.glims.org/.
[29]
Goodwin, N.R. et al. 2017. Monitoring Gully Change: A Comparison of Airborne and Terrestrial Laser Scanning Using a Case Study From Aratula, Queensland. Geomorphology. 282, (2017), 195–208. DOI:https://doi.org/10.1016/j.geomorph.2017.01.001.
[30]
Hansen, M.C. et al. 2008. A Method for Integrating MODIS And Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin. Remote Sensing of Environment. 112, 5 (2008), 2495–2513. DOI:https://doi.org/10.1016/j.rse.2007.11.012.
[31]
Hansen, M.C. et al. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 342, 6160 (Nov. 2013), 850–853. DOI:https://doi.org/10.1126/science.1244693.
[32]
Hansen, M.C. and Loveland, T.R. 2012. A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sensing of Environment. 122, (2012), 66–74. DOI:https://doi.org/10.1016/j.rse.2011.08.024.
[33]
Jensen, J.R. 2014. Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Education Limited.
[34]
Jensen, J.R. 2014. Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Education Limited.
[35]
Jonathan A. Foley, Ruth DeFries, Gregory P. Asner, Carol Barford, Gordon Bonan, Stephen R. Carpenter, F. Stuart Chapin, Michael T. Coe, Gretchen C. Daily, Holly K. Gibbs, Joseph H. Helkowski, Tracey Holloway, Erica A. Howard, Christopher J. Kucharik, Chad Monfreda, Jonathan A. Patz, I. Colin Prentice, Navin Ramankutty and Peter K. Snyder 2005. Global Consequences of Land Use. Science. 309, 5734 (2005), 570–574.
[36]
Karim, F. et al. 2015. Assessing the Impacts of Climate Change and Dams on Floodplain Inundation and Wetland Connectivity in the Wet–dry Tropics of Northern Australia. Journal of Hydrology. 522, (2015), 80–94. DOI:https://doi.org/10.1016/j.jhydrol.2014.12.005.
[37]
Klemas, V. and Yan, X.-H. 2014. Subsurface and Deeper Ocean Remote Sensing From Satellites: An Overview and New Results. Progress in Oceanography. 122, (2014), 1–9. DOI:https://doi.org/10.1016/j.pocean.2013.11.010.
[38]
Kozlov, I. et al. 2014. MODIS-Based Sea Surface Temperature of the Baltic Sea Curonian Lagoon. Journal of Marine Systems. 129, (2014), 157–165. DOI:https://doi.org/10.1016/j.jmarsys.2012.05.011.
[39]
Kratzer, S. et al. 2014. The Use of Ocean Color Remote Sensing in Integrated Coastal Zone Management—a Case Study From Himmerfjärden, Sweden. Marine Policy. 43, (2014), 29–39. DOI:https://doi.org/10.1016/j.marpol.2013.03.023.
[40]
Lin, Z. et al. 2013. Detection of Subtle Tectonic–geomorphic Features in Densely Forested Mountains by Very High-Resolution Airborne LiDAR Survey. Geomorphology. 182, (2013), 104–115. DOI:https://doi.org/10.1016/j.geomorph.2012.11.001.
[41]
Linde, J. and Grab, S. 2011. The Changing Trajectory of Snow Mapping. Progress in Physical Geography. 35, 2 (2011), 139–160. DOI:https://doi.org/10.1177/0309133311399493.
[42]
Mäkinen, J. et al. 2017. Triangular-Shaped Landforms Reveal Subglacial Drainage Routes in Sw Finland. Quaternary Science Reviews. 164, (2017), 37–53. DOI:https://doi.org/10.1016/j.quascirev.2017.03.024.
[43]
McKinna, L.I.W. 2015. Three Decades of Ocean-Color Remote-Sensing Trichodesmium Spp. in the World’s Oceans: A Review. Progress in Oceanography. 131, (2015), 177–199. DOI:https://doi.org/10.1016/j.pocean.2014.12.013.
[44]
McMillan, M. et al. 2014. Increased Ice Losses From Antarctica Detected by CryoSat-2. Geophysical Research Letters. 41, 11 (2014), 3899–3905. DOI:https://doi.org/10.1002/2014GL060111.
[45]
Mouw, C.B. et al. 2015. Aquatic Color Radiometry Remote Sensing of Coastal and Inland Waters: Challenges and Recommendations for Future Satellite Missions. Remote Sensing of Environment. 160, (2015), 15–30. DOI:https://doi.org/10.1016/j.rse.2015.02.001.
[46]
Nelson, A. and Dubé, K. 2016. Channel Response to an Extreme Flood and Sediment Pulse in a Mixed Bedrock and Gravel-Bed River. Earth Surface Processes and Landforms. 41, 2 (2016), 178–195. DOI:https://doi.org/10.1002/esp.3843.
[47]
Notebaert, B. et al. 2009. Qualitative and Quantitative Applications of LiDAR Imagery in Fluvial Geomorphology. Earth Surface Processes and Landforms. 34, 2 (2009), 217–231. DOI:https://doi.org/10.1002/esp.1705.
[48]
Obu, J. et al. 2017. Coastal Erosion and Mass Wasting Along the Canadian Beaufort Sea Based on Annual Airborne LiDAR Elevation Data. Geomorphology. 293, (2017), 331–346. DOI:https://doi.org/10.1016/j.geomorph.2016.02.014.
[49]
Ogilvie, A. et al. 2015. Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data. Journal of Hydrology. 523, (2015), 368–383. DOI:https://doi.org/10.1016/j.jhydrol.2015.01.036.
[50]
Palmer, S.C.J. et al. 2015. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sensing of Environment. 157, (2015), 1–8. DOI:https://doi.org/10.1016/j.rse.2014.09.021.
[51]
Paul, F. and Bolch, T. 2015. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sensing of Environment. 162, (2015), 408–426. DOI:https://doi.org/10.1016/j.rse.2013.07.043.
[52]
Pedersen, A. et al. 2015. Dune Deformation in a Multi-Directional Wind Regime: White Sands Dune Field, New Mexico. Earth Surface Processes and Landforms. 40, 7 (2015), 925–941. DOI:https://doi.org/10.1002/esp.3700.
[53]
Pritchard, H.D. et al. 2009. Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets. Nature. 461, 7266 (2009), 971–975. DOI:https://doi.org/10.1038/nature08471.
[54]
Quincey, D.J. et al. 2005. Optical Remote Sensing Techniques in High-Mountain Environments: Application to Glacial Hazards. Progress in Physical Geography. 29, 4 (2005), 475–505. DOI:https://doi.org/10.1191/0309133305pp456ra.
[55]
Ramankutty, N. et al. 2008. Farming the Planet: 1. Geographic Distribution of Global Agricultural Lands in the Year 2000. Global Biogeochemical Cycles. 22, 1 (2008). DOI:https://doi.org/10.1029/2007GB002952.
[56]
Raup, B. et al. 2007. Remote Sensing and GIS Technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computers & Geosciences. 33, 1 (2007), 104–125. DOI:https://doi.org/10.1016/j.cageo.2006.05.015.
[57]
Reddya, A.D. et al. Quantifying Soil Carbon Loss and Uncertainty From a Peatland Wildfire Using Multi-Temporal LiDAR. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. 170, 306–316. DOI:https://doi.org/https://doi.org/10.1016/j.rse.2015.09.017.
[58]
Reinart, A. and Reinhold, M. 2008. Mapping Surface Temperature in Large Lakes With MODIS Data. Remote Sensing of Environment. 112, 2 (2008), 603–611. DOI:https://doi.org/10.1016/j.rse.2007.05.015.
[59]
Richter, A. et al. 2013. Dune Cliff Erosion and Beach Width Change at the Northern and Southern Spits of Sylt Detected With Multi-Temporal Lidar. CATENA. 103, (Apr. 2013), 103–111. DOI:https://doi.org/10.1016/j.catena.2011.02.007.
[60]
Rignot, E. et al. 2011. Ice Flow of the Antarctic Ice Sheet. Science. 333, 6048 (2011), 1427–1430. DOI:https://doi.org/10.1126/science.1208336.
[61]
Rignot, E. et al. 2013. Ice-Shelf Melting Around Antarctica. Science. 341, 6143 (2013), 266–270. DOI:https://doi.org/10.1126/science.1235798.
[62]
Rignot, E. et al. 2008. Recent Antarctic Ice Mass Loss From Radar Interferometry and Regional Climate Modelling. Nature Geoscience. 1, 2 (2008), 106–110. DOI:https://doi.org/10.1038/ngeo102.
[63]
Robb, C. et al. 2015. A Semi-Automated Method for Mapping Glacial Geomorphology Tested at Breiðamerkurjökull, Iceland. Remote Sensing of Environment. 163, (2015), 80–90. DOI:https://doi.org/10.1016/j.rse.2015.03.007.
[64]
Roering, J.J. et al. 2013. ‘You are HERE’: Connecting the Dots With Airborne Lidar for Geomorphic Fieldwork. Geomorphology. 200, (2013), 172–183. DOI:https://doi.org/10.1016/j.geomorph.2013.04.009.
[65]
Roering, J.J. et al. 2013. ‘You are HERE’: Connecting the Dots With Airborne Lidar for Geomorphic Fieldwork. Geomorphology. 200, (Oct. 2013), 172–183. DOI:https://doi.org/10.1016/j.geomorph.2013.04.009.
[66]
Ruth S. DeFries, Richard A. Houghton, Matthew C. Hansen, Christopher B. Field, David Skole and John Townshend 2002. Carbon Emissions from Tropical Deforestation and Regrowth Based on Satellite Observations for the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America. 99, 22 (2002), 14256–14261.
[67]
Salcher, B.C. et al. 2010. High-Resolution Mapping of Glacial Landforms in the North Alpine Foreland, Austria. Geomorphology. 122, 3–4 (2010), 283–293. DOI:https://doi.org/10.1016/j.geomorph.2009.09.037.
[68]
Smith, M.J. and Clark, C.D. 2005. Methods for the Visualization of Digital Elevation Models for Landform Mapping. Earth Surface Processes and Landforms. 30, 7 (2005), 885–900. DOI:https://doi.org/10.1002/esp.1210.
[69]
Sterling, S. and Ducharne, A. 2008. Comprehensive Data Set of Global Land Cover Change for Land Surface Model Applications. Global Biogeochemical Cycles. 22, 3 (2008), n/a-n/a. DOI:https://doi.org/10.1029/2007GB002959.
[70]
2009. Challenges and Recommendations in Mapping of Glacier Parameters From Space: Results of the 2008 Global Land Ice Measurements From Space (GLIMS) Workshop, Boulder, Colorado, USA. Annals of Glaciology. 50, 53 (2009), 53–69. DOI:https://doi.org/10.5167/uzh-29212.
[71]
DEMs of Difference. British Society for Geomorphology.
[72]
Direct Acquisition of Data: Airborne Laser Scanning.
[73]
Evolution of Analog to Digital Mapping | YouTube.
[74]
NASA | Earth Observing Landsat 5 Turns 25 Years Old | YouTube.
[75]
Observing The Biosphere From Space [720p] | YouTube.
[76]
2013. On the Accuracy of Glacier Outlines Derived From Remote-Sensing Data. Annals of Glaciology. 54, 63 (2013), 171–182. DOI:https://doi.org/10.5167/uzh-83965.