1.
Rowe, G., Sweet, M., Beebee, T.J.C.: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
2.
Brown, T.A.: Genomes 3. Garland Science, New York (2007).
3.
Brown, T.A.: Genomes 4. Garland Science, New York (2018).
4.
Nicholl, D.S.T.: An Introduction to Genetic Engineering. Cambridge University Press, Cambridge (2008).
5.
Nicholl, D.S.T.: An Introduction to Genetic Engineering. Cambridge University Press, Cambridge (2008).
6.
Primrose, S.B., Twyman, R.M.: Principles of Gene Manipulation and Genomics. Blackwell, Malden, Massachusetts (2006).
7.
Primrose, S.B., Twyman, R.: Principles of Gene Manipulation and Genomics. Wiley, Hoboken (2009).
8.
Strachan, T., Read, A.P., Strachan, T.: Human Molecular Genetics. Garland Science, New York (2011).
9.
Human Genome Announcement at the White House, https://www.youtube.com/watch?v=slRyGLmt3qc, (2000).
10.
UCSC Genome Browser Home, https://genome.ucsc.edu/.
11.
EMBL-EBI Gene Ensembl, http://www.ensembl.org/index.html.
12.
Home - Genome - NCBI, http://www.ncbi.nlm.nih.gov/genome/.
13.
OMIM - Online Mendelian Inheritance in Man, http://www.omim.org/.
14.
Erratum: Initial Sequencing and Analysis of the Human Genome. Nature. 411, 720–720 (2001). https://doi.org/10.1038/35079657.
15.
Venter, J.C.: The Sequence of the Human Genome. Science. 291, 1304–1351 (2001). https://doi.org/10.1126/science.1058040.
16.
Grada, A., Weinbrecht, K.: Next-Generation Sequencing: Methodology and Application. Journal of Investigative Dermatology. 133, 1–4 (2013). https://doi.org/10.1038/jid.2013.248.
17.
Koch, L.: Genomics: Adding Another Dimension to Gene Regulation. Nature Reviews Genetics. 16, 563–563 (2015). https://doi.org/10.1038/nrg4007.
18.
Chial, H.: Human Genome Project: Sequencing the Human Genome | Learn Science at Scitable. Nature Education. 1, 219–219 (2008).
19.
Pyrosequencing Technology and Platform Overview - QIAGEN, https://www.qiagen.com/gb/resources/technologies/pyrosequencing-resource-center/technology-overview/.
20.
The Pyrosequencing Reaction Cascade System, https://www.youtube.com/watch?v=bNKEhOGvcaI, (2014).
21.
International Service for the Acquisition of Agri-biotech Applications, http://www.isaaa.org/.
22.
Schouten, H.J., Krens, F.A., Jacobsen, E.: Cisgenic Plants Are Similar to Traditionally Bred Plants: International Regulations for Genetically Modified Organisms Should Be Altered to Exempt Cisgenesis. EMBO reports. 7, 750–753 (2006). https://doi.org/10.1038/sj.embor.7400769.
23.
Espinoza, C., Schlechter, R., Herrera, D., Torres, E., Serrano, A., Medina, C., Arce-Johnson, P.: Cisgenesis and Intragenesis: New Tools for Improving Crops. Biological Research. 46, 323–331 (2013). https://doi.org/10.4067/S0716-97602013000400003.
24.
Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N.A., Al-Qurainy, F.: Role of Transgenic Plants in Agriculture and Biopharming. Biotechnology Advances. 30, 524–540 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.006.
25.
Recent Debate on GMOs | Standard Media, http://www.standardmedia.co.ke/ktnhome/video/watch/2000097876/the-gmo-debate-continues, (2015).
26.
James, C.: ISAAA Report on Global Status of Biotech/GM Crops, https://www.isaaa.org/resources/publications/briefs/49/pptslides/pdf/B49-Slides-English.pdf, (2014).
27.
Napier, J., Tocher, D.: Alpha & Omega: Making Omega-3 Fish Oils in GM Camelina Plants.
28.
Klümper, W., Qaim, M.: A Meta-Analysis of the Impacts of Genetically Modified Crops. PLoS ONE. 9, (2014). https://doi.org/10.1371/journal.pone.0111629.
29.
The Golden Rice Project, http://www.goldenrice.org/.
30.
Gilbert, N.: Case Studies: A Hard Look at GM Crops. Nature. 497, 24–26 (2013). https://doi.org/10.1038/497024a.
31.
GMWatch Home, http://gmwatch.org/.
32.
Greenpeace UK, http://www.greenpeace.org.uk/.
33.
Soil Association, https://www.soilassociation.org/.
34.
Anti-GMO Groups - United States | GMO Awareness, https://gmo-awareness.com/resources/anti-gmo-groups-america/.
35.
Say NO to GM - Alliance for Natural Health International, http://anhinternational.org/campaign/say-no-to-gm/.
36.
The Future of Food, http://www.thefutureoffood.com/About.html.
37.
Klee, H.J., Muskopf, Y.M., Gasser, C.S.: Cloning of an Arabidopsis Thaliana Gene Encoding 5-Enolpyruvylshikimate-3-Phosphate Synthase: Sequence Analysis and Manipulation to Obtain Glyphosate-Tolerant Plants. MGG Molecular & General Genetics. 210, 437–442 (1987). https://doi.org/10.1007/BF00327194.
38.
Nussbaum, R.L., McInnes, R.R., Willard, H.F.: Thompson & Thompson Genetics in Medicine. Elsevier, Philadelphia (2016).
39.
Nussbaum, R.L., McInnes, R.R., Willard, H.F.: Thompson & Thompson Genetics in Medicine.
40.
Kaltenboeck, B., Wang, C.: Advances in Real‐Time PCR: Application to Clinical Laboratory Diagnostics. Advances in Clinical Chemistry. 40, 219–259 (2005). https://doi.org/10.1016/S0065-2423(05)40006-2.
41.
Rahman, M.M., Wong, K.K., Alfizah, H., Hussin, S., Isahak, I.: Influenza and Respiratory Syncytial Viruses: Efficacy of Different Diagnostic Assays. Pakistan Journal of Medical Sciences. 31, 791–794 (1969). https://doi.org/10.12669/pjms.314.7003.
42.
Guidance for Clinicians on the Use of RT-PCR and Other Molecular Assays for Diagnosis of Influenza Virus Infection | Health Professionals | Seasonal Influenza (Flu), http://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm.
43.
Williamson, S.J., Allen, L.Z., Lorenzi, H.A., Fadrosh, D.W., Brami, D., Thiagarajan, M., McCrow, J.P., Tovchigrechko, A., Yooseph, S., Venter, J.C.: Metagenomic Exploration of Viruses Throughout the Indian Ocean. PLoS ONE. 7, (2012). https://doi.org/10.1371/journal.pone.0042047.
44.
Istrail, S., Sutton, G.G.: Whole-Genome Shotgun Assembly and Comparison of Human Genome Assemblies. Proceedings of the National Academy of Sciences of the United States of America. 101, 1916–1921 (2004).
45.
What Are Genome-Wide Association Studies? - Genetics Home Reference, https://ghr.nlm.nih.gov/primer/genomicresearch/gwastudies.
46.
Cai, N.: Sparse Whole-Genome Sequencing Identifies Two Loci for Major Depressive Disorder. Nature. 523, 588–591 (2015). https://doi.org/10.1038/nature14659.
47.
Durbin, R.M.: A Map of Human Genome Variation From Population-Scale Sequencing. Nature. 467, 1061–1073 (2010). https://doi.org/10.1038/nature09534.
48.
Brown, T.A.: Molecular Phylogenetics. In: Genomes 3. pp. 609–620. Garland Science, New York (2007).
49.
Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: A Revolutionary Tool for Transcriptomics. Nature Reviews Genetics. 10, 57–63 (2009). https://doi.org/10.1038/nrg2484.
50.
Tovar, J., Fischer, A., Clark, C.G.: The Mitosome, a Novel Organelle Related to Mitochondria in the Amitochondrial Parasite Entamoeba Histolytica. Molecular Microbiology. 32, 1013–1021 (1999). https://doi.org/10.1046/j.1365-2958.1999.01414.x.
51.
Regoes, A., Zourmpanou, D., León-Avila, G., van der Giezen, M., Tovar, J., Hehl, A.B.: Protein Import, Replication, and Inheritance of a Vestigial Mitochondrion. Journal of Biological Chemistry. 280, 30557–30563 (2005). https://doi.org/10.1074/jbc.M500787200.
52.
Leger, M.M., Kolisko, M., Kamikawa, R., Stairs, C.W., Kume, K., Čepička, I., Silberman, J.D., Andersson, J.O., Xu, F., Yabuki, A., Eme, L., Zhang, Q., Takishita, K., Inagaki, Y., Simpson, A.G.B., Hashimoto, T., Roger, A.J.: Organelles That Illuminate the Origins of Trichomonas Hydrogenosomes and Giardia Mitosomes. Nature Ecology & Evolution. 1, (2017). https://doi.org/10.1038/s41559-017-0092.
53.
Betts, H.C., Puttick, M.N., Clark, J.W., Williams, T.A., Donoghue, P.C.J., Pisani, D.: Integrated Genomic and Fossil Evidence Illuminates Life’s Early Evolution and Eukaryote Origin. Nature Ecology & Evolution. 2, 1556–1562 (2018). https://doi.org/10.1038/s41559-018-0644-x.
54.
Jedelský, P.L., Doležal, P., Rada, P., Pyrih, J., Šmíd, O., Hrdý, I., Šedinová, M., Marcinčiková, M., Voleman, L., Perry, A.J., Beltrán, N.C., Lithgow, T., Tachezy, J.: The Minimal Proteome in the Reduced Mitochondrion of the Parasitic Protist Giardia intestinalis. PLoS ONE. 6, (2011). https://doi.org/10.1371/journal.pone.0017285.
55.
Martincová, E.: Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging [open access]. Molecular and Cellular Biology. 35, 2864–2874 (2015).
56.
Voleman, L.: Giardia Intestinalis Mitosomes Undergo Synchronized Fission but Not Fusion and Are Constitutively Associated With the Endoplasmic Reticulum. BMC Biology. 15, (2017). https://doi.org/10.1186/s12915-017-0361-y.
57.
Rowe, G., Sweet, M., Beebee, T.: Mutation Rates. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
58.
Rowe, G., Sweet, M., Sweet, T.: mtDNA and rRNA. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
59.
Rowe, G., Sweet, M., Beebee, T.: Microsatellites. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
60.
Brown, T.A.: Replication Slippage. In: Genomes 3. pp. 511–511. Garland Science, New York (2007).
61.
Rowe, G., Sweet, M., Beebee, T.: Identifying Relatives in Behavioural Ecology. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
62.
Leadbeater, E., Carruthers, J.M., Green, J.P., Rosser, N.S., Field, J.: Nest Inheritance Is the Missing Source of Direct Fitness in a Primitively Eusocial Insect. Science. 333, 874–876 (2011). https://doi.org/10.1126/science.1205140.
63.
Rowe, G., Sweet, M., Beebee, T.: Assignment Tests. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
64.
Gunn, A.: DNA Profiling. In: Essential Forensic Biology. pp. 88–91. Wiley-Blackwell, Oxford (2008).
65.
Brown, T.A.: Microarrays. In: Genomes 3. pp. 169–175. Garland Science, New York (2007).
66.
The Genetics of Society | The Scientist Magazine, http://www.the-scientist.com/?articles.view/articleNo/41704/title/The-Genetics-of-Society/.
67.
Tovar, J., Wilkinson, S., Mottram, J.C., Fairlamb, A.H.: Evidence That Trypanothione Reductase Is an Essential Enzyme in Leishmania by Targeted Replacement of the Trya Gene Locus. Molecular Microbiology. 29, 653–660 (1998). https://doi.org/10.1046/j.1365-2958.1998.00968.x.
68.
Krieger, S.: Trypanosomes Lacking Trypanothione Reductase Are Avirulent and Show Increased Sensitivity to Oxidative Stress. Molecular Microbiology. 35, 542–552 (2002). https://doi.org/10.1046/j.1365-2958.2000.01721.x.
69.
Jones, N.G., Catta-Preta, C.M.C., Lima, A.P.C.A., Mottram, J.C.: Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects. ACS Infectious Diseases. 4, 467–477 (2018). https://doi.org/10.1021/acsinfecdis.7b00244.
70.
Wright, M.H.: Validation of N-Myristoyltransferase as an Antimalarial Drug Target Using an Integrated Chemical Biology Approach. Nature Chemistry. 6, 112–121 (2014). https://doi.org/10.1038/nchem.1830.
71.
Schlott, A.C., Holder, A.A., Tate, E.W.: Myristoylation as a Drug Target in Malaria: Exploring the Role of                            -Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infectious Diseases. 4, 449–457 (2018). https://doi.org/10.1021/acsinfecdis.7b00203.
72.
Wang, Z., Gerstein, M., Snyder, M.: RNA-seq: A Revolutionary Tool for Transcriptomics. Nature Reviews Genetics. 10, 57–63 (2009). https://doi.org/10.1038/nrg2484.
73.
Rowe, G., Sweet, M., Beebee, T.: DNA Barcoding. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
74.
Rowe, G., Sweet, M., Beebee, T.: Prey ID. In: An Introduction to Molecular Ecology. Oxford University Press, Oxford (2017).
75.
Freeland, J.R., Kirk, H., Petersen, S.: Predators and Prey. In: Molecular Ecology. pp. 309–313. Wiley-Blackwell, Oxford (2011).
76.
Freeland, J.R., Kirk, H., Petersen, S.: Predators and Prey. In: Molecular Ecology. pp. 309–313. Wiley-Blackwell, Oxford (2011). https://doi.org/10.1002/9780470979365.ch7.
77.
Urwin, R., Maiden, M.C.J.: Multi-Locus Sequence Typing: A Tool for Global Epidemiology. Trends in Microbiology. 11, 479–487 (2003). https://doi.org/10.1016/j.tim.2003.08.006.
78.
Strachan, T., Read, A.P., Strachan, T.: Genetic Mapping of Mendelian Characters. In: Human Molecular Genetics. pp. 441–467. Garland Science, New York (2011).
79.
Strachan, T., Read, A.P., Strachan, T.: Mapping Genes Conferring Susceptibility to Complex Diseases. In: Human Molecular Genetics. pp. 467–493. Garland Science, New York (2011).
80.
Strachan, T., Read, A.P., Strachan, T.: Identifying Human Disease Genes and Susceptibility Factors. In: Human Molecular Genetics. pp. 497–536. Garland Science, New York (2011).
81.
Slatkin, M.: Linkage Disequilibrium - Understanding the Evolutionary Past and Mapping the Medical Future. Nature Reviews Genetics. 9, 477–485 (2008). https://doi.org/10.1038/nrg2361.
82.
Lander, E.S.: Initial Impact of the Sequencing of the Human Genome. Nature. 470, 187–197 (2011). https://doi.org/10.1038/nature09792.
83.
Strachan, T., Read, A.P., Strachan, T.: Genetic Approaches to Treating Disease. In: Human Molecular Genetics. pp. 677–718. Garland Science, New York (2011).
84.
Escors, D., Breckpot, K.: Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential. Archivum Immunologiae et Therapiae Experimentalis. 58, 107–119 (2010). https://doi.org/10.1007/s00005-010-0063-4.
85.
Hoffman, E.P., Bronson, A., Levin, A.A., Takeda, S., Yokota, T., Baudy, A.R., Connor, E.M.: Restoring Dystrophin Expression in Duchenne Muscular Dystrophy Muscle. The American Journal of Pathology. 179, 12–22 (2011). https://doi.org/10.1016/j.ajpath.2011.03.050.
86.
Chun, Y.S., Byun, K., Lee, B.: Induced Pluripotent Stem Cells and Personalized Medicine: Current Progress and Future Perspectives. Anatomy & Cell Biology. 44, 245–255 (2011). https://doi.org/10.5115/acb.2011.44.4.245.
87.
Kindt, T.J., Osborne, B.A., Goldsby, R.A., Kuby, J.: Immunology. W. H. Freeman, New York (2007).
88.
Sadanand, S.: Vaccination: The Present and the Future, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3238332/.
89.
‘Different Types of Vaccines’ on History of Vaccines Website, http://www.historyofvaccines.org/content/articles/different-types-vaccines.
90.
‘Types of Vaccines’ on History of Vaccines Website, http://www.historyofvaccines.org/content/types-vaccines.
91.
‘The Human Immune System and Infectious Disease’ on History of Vaccines Website, http://www.historyofvaccines.org/content/articles/human-immune-system-and-infectious-disease.
92.
‘The Future of Immunization’ on History of Vaccines Webvsite, http://www.historyofvaccines.org/content/articles/future-immunization.
93.
‘The Development of HIV Vaccines’ on History of Vaccines Website, http://www.historyofvaccines.org/content/articles/development-hiv-vaccines.
94.
Boseley, S.: ‘First British volunteer injected with trial Ebola vaccine in Oxford’ on The Guardian Website, https://www.theguardian.com/society/2014/sep/17/ruth-atkins-first-british-volunteer-injected-trial-ebola-vaccine-oxford.
95.
Daniell, H., Singh, N.D., Mason, H., Streatfield, S.J.: Plant-Made Vaccine Antigens and Biopharmaceuticals. Trends in Plant Science. 14, 669–679 (2009). https://doi.org/10.1016/j.tplants.2009.09.009.
96.
Small, J.C., Ertl, H.C.J.: Viruses - From Pathogens to Vaccine Carriers. Current Opinion in Virology. 1, 241–245 (2011). https://doi.org/10.1016/j.coviro.2011.07.009.
97.
Serruto, D., Rappuoli, R.: Post-Genomic Vaccine Development. FEBS Letters. 580, 2985–2992 (2006). https://doi.org/10.1016/j.febslet.2006.04.084.
98.
Daniell, H., Singh, N.D., Mason, H., Streatfield, S.J.: Plant-Made Vaccine Antigens and Biopharmaceuticals. Trends in Plant Science. 14, 669–679 (2009). https://doi.org/10.1016/j.tplants.2009.09.009.
99.
Small, J.C., Ertl, H.C.J.: Viruses From Pathogens to Vaccine Carriers. Current Opinion in Virology. 1, 241–245 (2011). https://doi.org/10.1016/j.coviro.2011.07.009.