1.
Morison, J.I.L., Morecroft, M.D.: Plant Growth and Climate Change. Blackwell, Oxford (2006).
2.
Morison, J.I.L., Morecroft, M.D.: Plant Growth and Climate Change. Blackwell, Oxford (2006).
3.
Wang, W., Vinocur, B., Altman, A.: Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta. 218, 1–14 (2003). https://doi.org/10.1007/s00425-003-1105-5.
4.
Bohnert, H.J.: Abiotic Stress. In: Encyclopedia of Life Sciences. Wiley Interscience (2007). https://doi.org/10.1002/9780470015902.a0020087.
5.
Sreenivasulu, N.: Deciphering the Regulatory Mechanisms of Abiotic Stress Tolerance in Plants by Genomic Approaches. Gene. 388, 1–13 (2007). https://doi.org/10.1016/j.gene.2006.10.009.
6.
Midgley, G.F.: Plant Physiological Responses to Climate and Environmental Change. In: Encyclopedia of Life Sciences. Wiley Interscience (2017). https://doi.org/10.1002/9780470015902.a0003205.pub2.
7.
Smirnoff, N.: Plant Stress Physiology. In: Encyclopedia of Life Sciences. Wiley Interscience (2014). https://doi.org/10.1002/9780470015902.a0001297.pub2.
8.
Cushman, J.C., Bohnert, H.J.: Genomic Approaches to Plant Stress Tolerance. Current Opinion in Plant Biology. 3, 117–124 (2000). https://doi.org/10.1016/S1369-5266(99)00052-7.
9.
Mittler, R.: Abiotic Stress, the Field Environment and Stress Combination. Trends in Plant Science. 11, 15–19 (2006). https://doi.org/10.1016/j.tplants.2005.11.002.
10.
Vinocur, B., Altman, A.: Recent Advances in Engineering Plant Tolerance to Abiotic Stress: Achievements and Limitations. Current Opinion in Biotechnology. 16, 123–132 (2005). https://doi.org/10.1016/j.copbio.2005.02.001.
11.
Grover, A., Sahi, C., Sanan, N., Grover, A.: Taming Abiotic Stresses in Plants Through Genetic Engineering: Current Strategies and Perspective. Plant Science. 143, 101–111 (1999). https://doi.org/10.1016/S0168-9452(99)00025-4.
12.
Ferguson, I.B.: The Plant Response: Stress in the Daily Environment. Journal of Zhejiang University-SCIENCE A. 5, 129–132 (2004). https://doi.org/10.1007/BF02840912.
13.
Mahajan, S., Tuteja, N.: Cold, Salinity and Drought Stresses: An Overview. Archives of Biochemistry and Biophysics. 444, 139–158 (2005). https://doi.org/10.1016/j.abb.2005.10.018.
14.
Balbi, V., Devoto, A.: Jasmonate Signalling Network in Arabidopsis Thaliana: Crucial Regulatory Nodes and New Physiological Scenarios. New Phytologist. 177, 301–318 (2007). https://doi.org/10.1111/j.1469-8137.2007.02292.x.
15.
Knight, H., Knight, M.R.: Abiotic Stress Signalling Pathways: Specificity and Cross-Talk. Trends in Plant Science. 6, 262–267 (2001). https://doi.org/10.1016/S1360-1385(01)01946-X.
16.
Singh, K.: Transcription Factors in Plant Defense and Stress Responses. Current Opinion in Plant Biology. 5, 430–436 (2002). https://doi.org/10.1016/S1369-5266(02)00289-3.
17.
Latchman, D.S.: Transcription Factors. In: Encyclopedia of Life Sciences. Wiley Interscience (2007). https://doi.org/10.1002/9780470015902.a0005278.pub2.
18.
Mahajan, S., Tuteja, N.: Cold, Salinity and Drought Stresses: An Overview. Archives of Biochemistry and Biophysics. 444, 139–158 (2005). https://doi.org/10.1016/j.abb.2005.10.018.
19.
Matys, V.: TRANSFAC(R): Transcriptional Regulation, From Patterns to Profiles. Nucleic Acids Research. 31, 374–378 (2003). https://doi.org/10.1093/nar/gkg108.
20.
Vinocur, B., Altman, A.: Recent Advances in Engineering Plant Tolerance to Abiotic Stress: Achievements and Limitations. Current Opinion in Biotechnology. 16, 123–132 (2005). https://doi.org/10.1016/j.copbio.2005.02.001.
21.
Zhu, J.-K.: Salt and Dought Stress Signal Transduction in Plants. Annual Review of Plant Biology. 53, 247–273 (2002). https://doi.org/10.1146/annurev.arplant.53.091401.143329.
22.
Bailey-Serres, J.: Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiology. 160, 1698–1709 (2012).
23.
C. Mariano Cossani, Reynolds, M.P.: Physiological Traits for Improving Heat Tolerance in Wheat. Plant Physiology. 160, 1710–1718 (2012).
24.
Ort, D.R., Ainsworth, E.: Focus on Climate Change. Plant Physiology. 160, 1675–1676 (2012).
25.
Pirkkala, L., Sistonen, L.: Heat Shock Proteins (HSPs): Structure, Function and Genetics. In: Encyclopedia of Life Sciences. Credo Reference (2006). https://doi.org/10.1038/npg.els.0006130.
26.
Camagna, M., Takemoto, D.: Hypersensitive Response in Plants. In: Encyclopedia of Life Sciences. Wiley Interscience (2018). https://doi.org/10.1002/9780470015902.a0020103.pub2.
27.
Rietz, S., Parker, J.E.: Plant Disease and Defence. In: Encyclopedia of Life Sciences. Wiley Interscience (2007). https://doi.org/10.1002/9780470015902.a0004036.
28.
Corrion, A., Day, B.: Pathogen Resistance Signalling in Plants. In: Encyclopedia of Life Sciences. Wiley Interscience (2015). https://doi.org/10.1002/9780470015902.a0020119.pub2.
29.
Xiao, X., Kachroo, A.: Plant Defences Against Fungal Attack: Perception and Signal Transduction. In: Encyclopedia of Life Sciences. Wiley Interscience (2019). https://doi.org/10.1002/9780470015902.a0003438.pub3.
30.
Whitney, H.M., Glover, B.J.: Coevolution: Plant-Insect. In: Encyclopedia of Life Sciences. Wiley Interscience (2013). https://doi.org/10.1002/9780470015902.a0001762.pub2.
31.
Kessler, A.: Plant Defences against Herbivore Attack. In: Encyclopedia of Life Sciences. Wiley Interscience (2017). https://doi.org/10.1002/9780470015902.a0001324.pub3.
32.
Zhu, Z., Piao, S., Myneni, R.B.: Greening of the Earth and Its Drivers. Nature Climate Change. 6, 791–795 (2016). https://doi.org/10.1038/nclimate3004.
33.
Wullschleger, S.D., Strahl, M.: Climate Change: A Controlled Experiment. Scientific American. 302, 78–83 (2010).
34.
Midgley, G.F.: Plant Physiological Responses to Climate and Environmental Change. In: Encyclopedia of Life Sciences. pp. 1–12. Wiley Interscience (2001). https://doi.org/10.1002/9780470015902.a0003205.pub2.
35.
Long, S.P.: Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science. 312, 1918–1921 (2006). https://doi.org/10.1126/science.1114722.
36.
Sykes, M.T.: Climate Change Impacts: Vegetation. In: Encyclopedia of Life Sciences. Wiley Interscience (2009). https://doi.org/10.1002/9780470015902.a0021227.
37.
NASA: A Year in the Life of Earth’s CO2 | YouTube, https://www.youtube.com/watch?v=x1SgmFa0r04, (2014).
38.
Bonan, G.B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science. 320, 1444–1449 (2008).
39.
Brienen, R.J.W.: Long-Term Decline of the Amazon Carbon Sink. Nature. 519, 344–348 (2015). https://doi.org/10.1038/nature14283.
40.
Hemp, A.: Climate Change-Driven Forest Fires Marginalize the Impact of Ice Cap Wasting on Kilimanjaro. Global Change Biology. 11, 1013–1023 (2005). https://doi.org/10.1111/j.1365-2486.2005.00968.x.
41.
Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., Ebata, T., Safranyik, L.: Mountain Pine Beetle and Forest Carbon Feedback to Climate Change. Nature. 452, 987–990 (2008). https://doi.org/10.1038/nature06777.
42.
Hungate, B.A., Stilling, P.D., Dijkstra, P., Johnson, D.W., Ketterer, M.E., Hymus, G.J., Hinkle, C.R., Drake, B.G.: CO2 Elicits Long-Term Decline in Nitrogen Fixation. Science. 304, 1291–1291 (2004).
43.
Gibbard, S., Caldeira, K., Bala, G., Phillips, T.J., Wickett, M.: Climate Effects of Global Land Cover Change. Geophysical Research Letters. 32, (2005). https://doi.org/10.1029/2005GL024550.
44.
Bala, G., Caldeira, K., Wickett, M., Phillips, T.J., Lobell, D.B., Delire, C., Mirin, A.: Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation. UNT Digital Library. 104, 6550–6555 (2007). https://doi.org/10.1073pnas.0608998104.
45.
Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J., Luyssaert, S.: Europes Forest Management Did Not Mitigate Climate Warming. Science. 351, 597–600 (2016). https://doi.org/10.1126/science.aad7270.
46.
Smetacek, V., Klaas, C., Strass, V.H., Assmy, P.: Deep Carbon Export From a Southern Ocean Iron-Fertilized Diatom Bloom. Nature. 487, 313–319 (2012). https://doi.org/10.1038/nature11229.
47.
Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A.: Natural Climate Solutions. Proceedings of the National Academy of Sciences. 114, 11645–11650 (2017). https://doi.org/10.1073/pnas.1710465114.
48.
Birch, H.: Where the Ocean Meets the Sky, https://www.chemistryworld.com/feature/where-the-ocean-meets-the-sky/3004890.article.
49.
Poorter, H., Navas, M.-L.: Plant Growth and Competition at Elevated CO2: On Winners, Losers and Functional Groups. New Phytologist. 157, 175–198 (2003). https://doi.org/10.1046/j.1469-8137.2003.00680.x.
50.
Liu, Y., Oduor, A.M.O., Zhang, Z., Manea, A., Tooth, I.M., Leishman, M.R., Xu, X., van Kleunen, M.: Do Invasive Alien Plants Benefit More From Global Environmental Change Than Native Plants? Global Change Biology. 23, 3363–3370 (2017). https://doi.org/10.1111/gcb.13579.
51.
Schwartz, M.D., Ahas, R., Aasa, A.: Onset of Spring Starting Earlier Across the Northern Hemisphere. Global Change Biology. 12, 343–351 (2006). https://doi.org/10.1111/j.1365-2486.2005.01097.x.
52.
Menzel, A., Fabian, P.: Growing Season Extended in Europe. Nature. 397, 659–659 (1999). https://doi.org/10.1038/17709.
53.
Fitter, A.H., Fitter, R.S.R.: Rapid Changes in Flowering Time in British Plants. Science. 296, 1689–1691 (2002).
54.
Gange, A.C., Gange, E.G., Sparks, T.H., Boddy, L.: Rapid and Recent Changes in Fungal Fruiting Patterns. Science. 316, 71–71 (2007).
55.
Braschler, B., Hill, J.K.: Role of Larval Host Plants in the Climate-Driven Range Expansion of the Butterfly Polygonia C-Album. Journal of Animal Ecology. 76, 415–423 (2007). https://doi.org/10.1111/j.1365-2656.2007.01217.x.
56.
Hickling, R., Roy, D.B., Hill, J.K., Fox, R., Thomas, C.D.: The Distributions of a Wide Range of Taxonomic Groups Are Expanding Polewards. Global Change Biology. 12, 450–455 (2006). https://doi.org/10.1111/j.1365-2486.2006.01116.x.
57.
Visser, M.E., Both, C.: Shifts in Phenology Due to Global Climate Change: The Need for a Yardstick. Proceedings: Biological Sciences. 272, 2561–2569 (2005).
58.
Thackeray, S.J., Sparks, T.H., Frederiksen, M., Burthe, S.: Trophic Level Asynchrony in Rates of Phenological Change for Marine, Freshwater and Terrestrial Environments. Global Change Biology. 16, 3304–3313 (2010). https://doi.org/10.1111/j.1365-2486.2010.02165.x.
59.
Atkinson, A., Hill, S.L., Pakhomov, E.A., Siegel, V., Reiss, C.S., Loeb, V.J., Steinberg, D.K., Schmidt, K., Tarling, G.A., Gerrish, L., Sailley, S.F.: Krill (Euphausia Superba) Distribution Contracts Southward During Rapid Regional Warming. Nature Climate Change. 9, 142–147 (2019). https://doi.org/10.1038/s41558-018-0370-z.
60.
Lenoir, J., Svenning, J.C.: Climate-Related Range Shifts - a Global Multidimensional Synthesis and New Research Directions. Ecography. 38, 15–28 (2015). https://doi.org/10.1111/ecog.00967.
61.
Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., Travers, S.E.: Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annual Review of Phytopathology. 44, 489–509 (2006). https://doi.org/10.1146/annurev.phyto.44.070505.143420.
62.
DeLucia, E.H., Nabity, P.D., Zavala, J.A., Berenbaum, M.R.: Climate Change: Resetting Plant-Insect Interactions. Plant Physiology. 160, 1677–1685 (2012).
63.
Jamieson, M.A., Trowbridge, A.M., Raffa, K.F., Lindroth, R.L.: Consequences of Climate Warming and Altered Precipitation Patterns for Plant-Insect and Multitrophic Interactions. Plant Physiology. 160, 1719–1727 (2012).
64.
Yuan, J.S., Himanen, S.J., Holopainen, J.J., Chen, F., Stewart Jr., C.N.: Smelling Global Climate Change: Mitigation of Function for Plant Volatile Organic Compounds. Trends in Ecology & Evolution. 24, 323–331 (2009).
65.
Welcome to Carbon Atlas | Global Carbon Atlas, http://www.globalcarbonatlas.org/en/content/welcome-carbon-atlas.
66.
Young, H., Somerville, C.: Growing Better Biofuel Crops | The Scientist, http://www.the-scientist.com/?articles.view/articleNo/32264/title/Growing-Better-Biofuel-Crops/.
67.
Somerville, C.: Biofuels. Current Biology. 17, R115–R119 (2007). https://doi.org/10.1016/j.cub.2007.01.010.
68.
Harrabin, R.: Biomass May Hinder Climate Fight | BBC News, https://www.bbc.co.uk/news/science-environment-20303668.
69.
Sucking Up Carbon: Greenhouse Gases Must Be Scrubbed From the Air. The Economist. (2017).
70.
Rosling, H.: Hans Rosling: Global Population Growth, Box by Box | TED, https://www.ted.com/talks/hans_rosling_on_global_population_growth, (2010).
71.
Benton, T.: What Will We Eat in 2030? | World Economic Forum, https://www.weforum.org/agenda/2016/11/what-will-we-eat-in-2030?utm_content=bufferf4318&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer.
72.
Fitter, A.: People, Plants and Planet, http://www.gatsbyplants.leeds.ac.uk/tree/uploads/Lectures/Fitter_A_SS12/player.html.
73.
Baulcombe, D.: Reaping the Benefits, http://www.gatsbyplants.leeds.ac.uk/tree.2.0/view_lecture.php?permalink=MTA0NQ.
74.
Godfray, H.C.J., Beddington, J.R., Cute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C.: Food Security: The Challenge of Feeding 9 Billion People. Science. 327, 812–818 (2010).
75.
Ort, D.R., Merchant, S.S., Alric, J., Berkan, A.: Redesigning Photosynthesis to Sustainably Meet Global Food and Bioenergy Demand. Proceedings of the National Academy of Sciences. 112, 8529–8536 (2015). https://doi.org/10.1073/pnas.1424031112.
76.
Farre, G., Twyman, R.M., Zhu, C., Capell, T., Christou, P.: Nutritionally Enhanced Crops and Food Security: Scientific Achievements Versus Political Expediency. Current Opinion in Biotechnology. 22, 245–251 (2011). https://doi.org/10.1016/j.copbio.2010.11.002.