[1]
Arnold, S.J. and Robertson, E.J. 2009. Making a Commitment: Cell Lineage Allocation and Axis Patterning in the Early Mouse Embryo. Nature Reviews Molecular Cell Biology. 10, 2 (2009), 91–103. DOI:https://doi.org/10.1038/nrm2618.
[2]
Arnold, S.J. and Robertson, E.J. 2009. Making a Commitment: Cell Lineage Allocation and Axis Patterning in the Early Mouse Embryo. Nature Reviews Molecular Cell Biology. 10, 2 (2009), 91–103. DOI:https://doi.org/10.1038/nrm2618.
[3]
Artus, J. and Chazaud, C. 2014. A Close Look at the Mammalian Blastocyst: Epiblast and Primitive Endoderm Formation. Cellular and Molecular Life Sciences. 71, 17 (2014), 3327–3338. DOI:https://doi.org/10.1007/s00018-014-1630-3.
[4]
Babu, D. and Roy, S. 2013. Left-Right Asymmetry: Cilia Stir Up New Surprises in the Node. Open Biology. 3, 5 (2013). DOI:https://doi.org/10.1098/rsob.130052.
[5]
Blom, H.J. 2009. Folic Acid, Methylation and Neural Tube Closure in Humans. Birth Defects Research Part A: Clinical and Molecular Teratology. 85, 4 (2009), 295–302. DOI:https://doi.org/10.1002/bdra.20581.
[6]
Briscoe, J. and Novitch, B.G. 2008. Regulatory Pathways Linking Progenitor Patterning, Cell Fates and Neurogenesis in the Ventral Neural Tube. Philosophical Transactions of the Royal Society B: Biological Sciences. 363, 1489 (2008), 57–70. DOI:https://doi.org/10.1098/rstb.2006.2012.
[7]
Briscoe, J. and Thérond, P.P. 2013. The Mechanisms of Hedgehog Signalling and Its Roles in Development and Disease. Nature Reviews Molecular Cell Biology. 14, 7 (2013), 418–431. DOI:https://doi.org/10.1038/nrm3598.
[8]
Butler, M.T. and Wallingford, J.B. 2017. Planar Cell Polarity in Development and Disease. Nature Reviews Molecular Cell Biology. 18, 6 (Mar. 2017), 375–388. DOI:https://doi.org/10.1038/nrm.2017.11.
[9]
Cardenas-Rodriguez, M. and Badano, J.L. 2009. Ciliary Biology: Understanding the Cellular and Genetic Basis of Human Ciliopathies. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 151C, 4 (2009), 263–280. DOI:https://doi.org/10.1002/ajmg.c.30227.
[10]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[11]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[12]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[13]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[14]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[15]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[16]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[17]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[18]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[19]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[20]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[21]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[22]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[23]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[24]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[25]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[26]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[27]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[28]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[29]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[30]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[31]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[32]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[33]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[34]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[35]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[36]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[37]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[38]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[39]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[40]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[41]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[42]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[43]
Carlson, B.M. 2014. Human Embryology and Developmental Biology. Elsevier/Saunders.
[44]
Carlson, B.M. 2013. Human Embryology and Developmental Biology. Saunders.
[45]
Chen, R.A. and Goodman, W.G. 2004. Role of the Calcium-Sensing Receptor in Parathyroid Gland Physiology. American Journal Of Physiology. Renal Physiology. 286, 6 (2004), F1005–F1011. DOI:https://doi.org/10.1152/ajprenal.00013.2004.
[46]
Chi, F. et al. 2017. The Apical Domain Defines the Trophectoderm Differentiation in Early Mammalian Embryo by Regulating Yap Nuclear Translocation [open access]. AME Medical Journal. 2, 10 (2017).
[47]
Cockburn, K. and Rossant, J. 2010. Making the Blastocyst: Lessons From the Mouse. Journal of Clinical Investigation. 120, 4 (2010), 995–1003. DOI:https://doi.org/10.1172/JCI41229.
[48]
Copp, A.J. 2005. Neurulation in the Cranial Region - Normal and Abnormal. Journal of Anatomy. 207, 5 (2005), 623–635. DOI:https://doi.org/10.1111/j.1469-7580.2005.00476.x.
[49]
Copp, A.J. 2005. Neurulation in the Cranial Region - Normal and Abnormal. Journal of Anatomy. 207, 5 (2005), 623–635. DOI:https://doi.org/10.1111/j.1469-7580.2005.00476.x.
[50]
Copp, A.J. 2005. Neurulation in the Cranial Region - Normal and Abnormal. Journal of Anatomy. 207, 5 (2005), 623–635. DOI:https://doi.org/10.1111/j.1469-7580.2005.00476.x.
[51]
Copp, A.J. and Greene, N.D. 2009. Genetics and Development of Neural Tube Defects. The Journal of Pathology. (2009). DOI:https://doi.org/10.1002/path.2643.
[52]
Copp, A.J. and Greene, N.D.E. 2009. Genetics and Development of Neural Tube Defects. The Journal of Pathology. 220, 2 (2009), 217–230. DOI:https://doi.org/10.1002/path.2643.
[53]
Copp, A.J. and Greene, N.D.E. 2009. Genetics and Development of Neural Tube Defects. The Journal of Pathology. 220, 2 (2009), 217–230. DOI:https://doi.org/10.1002/path.2643.
[54]
Copp, A.J. and Greene, N.D.E. 2013. Neural Tube Defects-Disorders of Neurulation and Related Embryonic Processes. Wiley Interdisciplinary Reviews: Developmental Biology. 2, 2 (2013), 213–227. DOI:https://doi.org/10.1002/wdev.71.
[55]
Copp, A.J. and Greene, N.D.E. 2013. Neural Tube Defects-Disorders of Neurulation and Related Embryonic Processes. Wiley Interdisciplinary Reviews: Developmental Biology. 2, 2 (2013), 213–227. DOI:https://doi.org/10.1002/wdev.71.
[56]
Cordero, D.R. et al. 2011. Cranial Neural Crest Cells on the Move: Their Roles in Craniofacial Development. American Journal of Medical Genetics Part A. 155, 2 (2011), 270–279. DOI:https://doi.org/10.1002/ajmg.a.33702.
[57]
Development of the Face and Palate: https://anat550.sitehost.iu.edu/hnanim/face/face.html.
[58]
Development of the Pharyngeal Pouches: https://anat550.sitehost.iu.edu/hnanim/pouch/pouch.html.
[59]
Development of the Thyroid Gland: https://anat550.sitehost.iu.edu/hnanim/thyroid/thyroid.html.
[60]
Doudney, K. and Stanier, P. 2005. Epithelial Cell Polarity Genes Are Required for Neural Tube Closure. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 135C, 1 (2005), 42–47. DOI:https://doi.org/10.1002/ajmg.c.30052.
[61]
Eggenschwiler, J.T. and Anderson, K.V. 2007. Cilia and Developmental Signaling. Annual Review of Cell and Developmental Biology. 23, 1 (2007), 345–373. DOI:https://doi.org/10.1146/annurev.cellbio.23.090506.123249.
[62]
Fulka, H. 2008. Chromatin in Early Mammalian Embryos: Achieving the Pluripotent State. Differentiation. 76, 1 (2008), 3–14. DOI:https://doi.org/10.1111/j.1432-0436.2007.00247.x.
[63]
Fundamentals of Neural Tube Defects | Projmed: 2015. https://web.archive.org/web/20230330172903/http://www.projmed.com/2015/05/fundamentals-of-neural-tube-defects/.
[64]
Gilbert, S.F. and Barresi, M.J.F. 2016. Developmental Biology. Sinauer Associates, Inc., Publishers.
[65]
Gilbert, S.F. and Barresi, M.J.F. 2016. Developmental Biology. Sinauer Associates, Inc., Publishers.
[66]
Gilbert, S.F. and Barresi, M.J.F. 2016. Developmental Biology. Sinauer Associates, Inc., Publishers.
[67]
Gilbert, S.F. and Barresi, M.J.F. 2016. Developmental Biology. Sinauer Associates, Inc., Publishers.
[68]
Gilbert, S.F. and Barresi, M.J.F. 2016. Developmental Biology. Sinauer Associates, Inc., Publishers.
[69]
Goodman, H.M. 2009. Basic Medical Endocrinology. Academic.
[70]
Goodman, H.M. 2009. Basic Medical Endocrinology. Elsevier/Academic Press.
[71]
Goodman, H.M. 2010. Basic Medical Endocrinology. Elsevier Science & Technology.
[72]
Goodman, H.M. 2010. Basic Medical Endocrinology. Elsevier Science & Technology.
[73]
Goodman, H.M. 2010. Basic Medical Endocrinology. Elsevier Science & Technology.
[74]
Goodman, H.M. 2010. Basic Medical Endocrinology. Elsevier Science & Technology.
[75]
Goodman, H.M. 2009. Hormonal Control of Pregnancy and Lactation. Basic Medical Endocrinology. Academic.
[76]
Goodman, H.M. 2009. Hormonal Control of Pregnancy and Lactation. Basic Medical Endocrinology. Academic.
[77]
Goodman, H.M. 2009. Hormonal Control of Pregnancy and Lactation. Basic Medical Endocrinology. Academic.
[78]
Goodman, H.M. 2009. Hormonal Control of Pregnancy and Lactation. Basic Medical Endocrinology. Academic.
[79]
Goodman, H.M. 2009. Hormonal Regulation of Calcium Balance. Basic Medical Endocrinology. Academic.
[80]
Goodman, H.M. 2009. Hormonal Regulation of Calcium Balance. Basic Medical Endocrinology. Elsevier/Academic Press.
[81]
Goodman, W.G. and Quarles, L.D. 2008. Development and Progression of Secondary Hyperparathyroidism in Chronic Kidney Disease: Lessons From Molecular Genetics. Kidney International. 74, 3 (2008), 276–288. DOI:https://doi.org/10.1038/sj.ki.5002287.
[82]
Greene, N.D.E. 2009. Genetics of Human Neural Tube Defects. Human Molecular Genetics. 18, R2 (2009), R113–R129. DOI:https://doi.org/10.1093/hmg/ddp347.
[83]
Greene, N.D.E. et al. 2009. Genetics of Human Neural Tube Defects. Human Molecular Genetics. 18, R2 (2009), R113–R129. DOI:https://doi.org/10.1093/hmg/ddp347.
[84]
Greene, N.D.E. and Copp, A.J. 2009. Development of the Vertebrate Central Nervous System: Formation of the Neural Tube. Prenatal Diagnosis. 29, 4 (2009), 303–311. DOI:https://doi.org/10.1002/pd.2206.
[85]
Greene, N.D.E. and Copp, A.J. 2009. Development of the Vertebrate Central Nervous System: Formation of the Neural Tube. Prenatal Diagnosis. 29, 4 (2009), 303–311. DOI:https://doi.org/10.1002/pd.2206.
[86]
Greene, N.D.E. and Copp, A.J. 2009. Development of the Vertebrate Central Nervous System: Formation of the Neural Tube. Prenatal Diagnosis. 29, 4 (2009), 303–311. DOI:https://doi.org/10.1002/pd.2206.
[87]
Greene, N.D.E. and Copp, A.J. 2014. Neural Tube Defects. Annual Review of Neuroscience. 37, 1 (2014), 221–242. DOI:https://doi.org/10.1146/annurev-neuro-062012-170354.
[88]
Greene, N.D.E. and Copp, A.J. 2014. Neural Tube Defects. Annual Review of Neuroscience. 37, 1 (2014), 221–242. DOI:https://doi.org/10.1146/annurev-neuro-062012-170354.
[89]
Greenspan, F.S. and Gardner, D.G. 2004. Basic & Clinical Endocrinology. McGraw-Hill.
[90]
Grevellec, A. and Tucker, A.S. 2010. The Pharyngeal Pouches and Clefts: Development, Evolution, Structure and Derivatives. Seminars in Cell & Developmental Biology. 21, 3 (2010), 325–332. DOI:https://doi.org/10.1016/j.semcdb.2010.01.022.
[91]
Hamada, H. and Tam, P.P.L. 2014. Mechanisms of Left-Right Asymmetry and Patterning: Driver, Mediator and Responder. F1000Prime Reports. 6, 110 (2014). DOI:https://doi.org/10.12703/P6-110.
[92]
Harris, M.J. and Juriloff, D.M. 2007. Mouse Mutants With Neural Tube Closure Defects and Their Role in Understanding Human Neural Tube Defects. Birth Defects Research Part A: Clinical and Molecular Teratology. 79, 3 (2007), 187–210. DOI:https://doi.org/10.1002/bdra.20333.
[93]
Harris, M.J. and Juriloff, D.M. 2007. Mouse Mutants With Neural Tube Closure Defects and Their Role in Understanding Human Neural Tube Defects. Birth Defects Research Part A: Clinical and Molecular Teratology. 79, 3 (2007), 187–210. DOI:https://doi.org/10.1002/bdra.20333.
[94]
Hirokawa, N. 2009. Fluid Dynamic Mechanism Responsible for Breaking the Left-Right Symmetry of the Human Body: The Nodal Flow. Annual Review of Fluid Mechanics. 41, 1 (2009), 53–72. DOI:https://doi.org/10.1146/annurev.fluid.010908.165141.
[95]
Ikawa, M. 2010. Fertilization: A Sperm’s Journey to and Interaction With the Oocyte. Journal of Clinical Investigation. 120, 4 (2010), 984–994. DOI:https://doi.org/10.1172/JCI41585.
[96]
Jacob, J. and Briscoe, J. 2003. Gli Proteins and the Control of Spinal‐cord Patterning. EMBO Reports. 4, 8 (2003), 761–765. DOI:https://doi.org/10.1038/sj.embor.embor896.
[97]
Jessell, T.M. 2000. Neuronal Specification in the Spinal Cord: Inductive Signals and Transcriptional Codes. Nature Reviews Genetics. 1, 1 (2000), 20–29. DOI:https://doi.org/10.1038/35049541.
[98]
Johnson, D. and Wilkie, A.O.M. 2011. Craniosynostosis. European Journal of Human Genetics. 19, 4 (2011), 369–376. DOI:https://doi.org/10.1038/ejhg.2010.235.
[99]
Jones, C. and Chen, P. 2007. Planar Cell Polarity Signaling in Vertebrates. BioEssays. 29, 2 (2007), 120–132. DOI:https://doi.org/10.1002/bies.20526.
[100]
Kempná, P. and Flück, C.E. 2008. Adrenal Gland Development and Defects. Best Practice & Research Clinical Endocrinology & Metabolism. 22, 1 (2008), 77–93. DOI:https://doi.org/10.1016/j.beem.2007.07.008.
[101]
Koopman, P. and Svingen, T. 2013. Building the Mammalian Testis: Origins, Differentiation, and Assembly of the Component Cell Populations. Genes & Development. 27, 22 (2013), 2409–2426. DOI:https://doi.org/10.1101/gad.228080.113.
[102]
Korotkevich, E. et al. 2017. The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Developmental Cell. 40, 3 (2017), 235-247.e7. DOI:https://doi.org/10.1016/j.devcel.2017.01.006.
[103]
Kota, S.K. and Kota, S.K. 2013. Fetal Endocrinology. Indian Journal of Endocrinology and Metabolism. 17, 4 (2013). DOI:https://doi.org/10.4103/2230-8210.113722.
[104]
Lalli, E. 2010. Adrenal Cortex Ontogenesis. Best Practice & Research Clinical Endocrinology & Metabolism. 24, 6 (2010), 853–864. DOI:https://doi.org/10.1016/j.beem.2010.10.009.
[105]
Lanner, F. and Rossant, J. 2010. The Role of FGF/Erk Signaling in Pluripotent Cells. Development. 137, 20 (2010), 3351–3360. DOI:https://doi.org/10.1242/dev.050146.
[106]
Levine, A.J. and Brivanlou, A.H. 2007. Proposal of a Model of Mammalian Neural Induction. Developmental Biology. 308, 2 (2007), 247–256. DOI:https://doi.org/10.1016/j.ydbio.2007.05.036.
[107]
McGill Embryology: http://sprojects.mmi.mcgill.ca/embryology/ug/Adrenal_Stuff/Normal/zones.html.
[108]
Mihajlović, A.I. and Bruce, A.W. 2017. The First Cell-Fate Decision of Mouse Preimplantation Embryo Development: Integrating Cell Position and Polarity. Open Biology. 7, 11 (2017). DOI:https://doi.org/10.1098/rsob.170210.
[109]
Morriss-Kay, G.M. and Wilkie, A.O.M. 2005. Growth of the Normal Skull Vault and Its Alteration in Craniosynostosis: Insights From Human Genetics and Experimental Studies. Journal of Anatomy. 207, 5 (2005), 637–653. DOI:https://doi.org/10.1111/j.1469-7580.2005.00475.x.
[110]
Muñoz-Sanjuán, I. and Brivanlou, A.H. 2002. Neural Induction, the Default Model and Embryonic Stem Cells. Nature Reviews Neuroscience. 3, 4 (2002), 271–280. DOI:https://doi.org/10.1038/nrn786.
[111]
Nakaya, Y. and Sheng, G. 2008. Epithelial to Mesenchymal Transition During Gastrulation: An Embryological View. Development, Growth & Differentiation. 50, 9 (2008), 755–766. DOI:https://doi.org/10.1111/j.1440-169X.2008.01070.x.
[112]
Naveh-Many, T. 2010. Minireview: The Play of Proteins on the Parathyroid Hormone Messenger Ribonucleic Acid Regulates Its Expression. Endocrinology. 151, 4 (2010), 1398–1402. DOI:https://doi.org/10.1210/en.2009-1160.
[113]
Nikolopoulou, E. et al. 2017. Neural Tube Closure: Cellular, Molecular and Biomechanical Mechanisms. Development. 144, 4 (2017), 552–566. DOI:https://doi.org/10.1242/dev.145904.
[114]
Nowotschin, S. and Hadjantonakis, A.-K. 2010. Cellular Dynamics in the Early Mouse Embryo: From Axis Formation to Gastrulation. Current Opinion in Genetics & Development. 20, 4 (2010), 420–427. DOI:https://doi.org/10.1016/j.gde.2010.05.008.
[115]
Okabe, M. 2014. Mechanism of Fertilization: A Modern View. Experimental Animals. 63, 4 (2014), 357–365.
[116]
Okabe, M. 2015. Mechanisms of Fertilization Elucidated by Gene-Manipulated Animals. Asian Journal of Andrology. 17, 4 (2015), 646–652. DOI:https://doi.org/10.4103/1008-682X.153299.
[117]
Okabe, M. 2013. The Cell Biology of Mammalian Fertilization. Development. 140, 22 (2013), 4471–4479. DOI:https://doi.org/10.1242/dev.090613.
[118]
Paudyal, A. et al. 2010. The Novel Mouse Mutant, Chuzhoi, Has Disruption of Ptk7 Protein and Exhibits Defects in Neural Tube, Heart and Lung Development and Abnormal Planar Cell Polarity in the Ear. BMC Developmental Biology. 10, 1 (2010). DOI:https://doi.org/10.1186/1471-213X-10-87.
[119]
Richtsmeier, J.T. and Flaherty, K. 2013. Hand in Glove: Brain and Skull in Development and Dysmorphogenesis. Acta Neuropathologica. 125, 4 (2013), 469–489. DOI:https://doi.org/10.1007/s00401-013-1104-y.
[120]
Rossant, J. and Tam, P.P.L. 2009. Blastocyst Lineage Formation, Early Embryonic Asymmetries and Axis Patterning in the Mouse. Development. 136, 5 (2009), 701–713. DOI:https://doi.org/10.1242/dev.017178.
[121]
Rossant, J. and Tam, P.P.L. 2009. Blastocyst Lineage Formation, Early Embryonic Asymmetries and Axis Patterning in the Mouse. Development. 136, 5 (2009), 701–713. DOI:https://doi.org/10.1242/dev.017178.
[122]
Rossi, P. and Dolci, S. 2013. Paracrine Mechanisms Involved in the Control of Early Stages of Mammalian Spermatogenesis. Frontiers in Endocrinology. 4, (2013). DOI:https://doi.org/10.3389/fendo.2013.00181.
[123]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[124]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[125]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[126]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[127]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[128]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[129]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[130]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[131]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[132]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[133]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[134]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[135]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[136]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[137]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[138]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[139]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[140]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[141]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[142]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[143]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[144]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[145]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[146]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[147]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[148]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[149]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[150]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[151]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[152]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[153]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[154]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[155]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[156]
Schoenwolf, G.C. et al. 2020. Larsen’s Human Embryology. Churchill Livingstone, an imprint of Elsevier.
[157]
Schoenwolf, G.C. et al. 2014. Larsen’s Human Embryology. Churchill Livingstone.
[158]
Senarath-Yapa, K. and Longaker, M.T. 2012. Craniosynostosis. Organogenesis. 8, 4 (2012), 103–113. DOI:https://doi.org/10.4161/org.23307.
[159]
Shen, M.M. 2007. Nodal Signaling: Developmental Roles and Regulation. Development. 134, 6 (2007), 1023–1034. DOI:https://doi.org/10.1242/dev.000166.
[160]
Shook, D.S. and Keller, R. 2003. Variation Among Amphibians of Morphogenetic Mechanisms Driving Gastrulation. Integrative and Comparative Biology. 43, 6 (2003).
[161]
Srinivas, S. 2006. The Anterior Visceral Endoderm—Turning Heads. genesis. 44, 11 (2006), 565–572. DOI:https://doi.org/10.1002/dvg.20249.
[162]
Srinivas, S. 2006. The Anterior Visceral Endoderm—Turning Heads. genesis. 44, 11 (2006), 565–572. DOI:https://doi.org/10.1002/dvg.20249.
[163]
Stephenson, R.O. et al. 2012. Intercellular Interactions, Position, and Polarity in Establishing Blastocyst Cell Lineages and Embryonic Axes. Cold Spring Harbor Perspectives in Biology. 4, 11 (2012). DOI:https://doi.org/10.1101/cshperspect.a008235.
[164]
Stower, M.J. and Srinivas, S. 2014. Heading Forwards: Anterior Visceral Endoderm Migration in Patterning the Mouse Embryo. Philosophical Transactions of the Royal Society B: Biological Sciences. 369, 1657 (2014), 20130546–20130546. DOI:https://doi.org/10.1098/rstb.2013.0546.
[165]
Strachan, T. 2011. Genetic Manipulation of Animals. Human Molecular Genetics. Garland Science.
[166]
Strachan, T. 2011. Genetic Mapping of Mendelian Characters. Human Molecular Genetics. Garland Science.
[167]
Strachan, T. 2011. Identifying Human Disease Genes and Susceptibility Factors. Human Molecular Genetics. Garland Science.
[168]
Sutherland, M.J. and Ware, S.M. 2009. Disorders of Left-Right Asymmetry: Heterotaxy and Situs Inversus. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 151C, 4 (2009), 307–317. DOI:https://doi.org/10.1002/ajmg.c.30228.
[169]
Swann, K. and Lai, F.A. 2016. Egg Activation at Fertilization by a Soluble Sperm Protein. Physiological Reviews. 96, 1 (2016), 127–149. DOI:https://doi.org/10.1152/physrev.00012.2015.
[170]
Syllabus contents: https://syllabus.med.unc.edu/courseware/embryo_images/unitwelcome/welcome_htms/contents.htm#.
[171]
Takaoka, K. and Hamada, H. 2012. Cell Fate Decisions and Axis Determination in the Early Mouse Embryo. Development. 139, 1 (2012), 3–14. DOI:https://doi.org/10.1242/dev.060095.
[172]
Walczak, E.M. and Hammer, G.D. 2014. Regulation of the Adrenocortical Stem Cell Niche: Implications for Disease. Nature Reviews Endocrinology. 11, 1 (2014), 14–28. DOI:https://doi.org/10.1038/nrendo.2014.166.
[173]
Wallingford, J.B. 2012. Planar Cell Polarity and the Developmental Control of Cell Behavior in Vertebrate Embryos. Annual Review of Cell and Developmental Biology. 28, 1 (2012), 627–653. DOI:https://doi.org/10.1146/annurev-cellbio-092910-154208.
[174]
Wilde, J.J. et al. 2014. Genetic, Epigenetic, and Environmental Contributions to Neural Tube Closure. Annual Review of Genetics. 48, 1 (2014), 583–611. DOI:https://doi.org/10.1146/annurev-genet-120213-092208.
[175]
Ybot-Gonzalez, P. et al. 2007. Neural Plate Morphogenesis During Mouse Neurulation Is Regulated by Antagonism of Bmp Signalling. Development. 134, 17 (2007), 3203–3211. DOI:https://doi.org/10.1242/dev.008177.
[176]
Ybot-Gonzalez, P. et al. 2007. Neural Plate Morphogenesis During Mouse Neurulation Is Regulated by Antagonism of Bmp Signalling. Development. 134, 17 (2007), 3203–3211. DOI:https://doi.org/10.1242/dev.008177.
[177]
Yoshiba, S. and Hamada, H. 2014. Roles of Cilia, Fluid Flow, and Ca2+ Signaling in Breaking of Left–right Symmetry. Trends in Genetics. 30, 1 (2014), 10–17. DOI:https://doi.org/10.1016/j.tig.2013.09.001.
[178]
Adrenal Insufficiency.
[179]
2008. Gastrulation Animation | YouTube. YouTube.
[180]
Introduction to Bone Biology | YouTube.