Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conserved functions of the pRB and E2F families

Key Points

  • Studies of pRB and E2F function in flies and worms share some important similarities that provide insight into the core activities of these proteins and show how a common regulatory module can control various biological functions in different organisms.

  • In Drosophila melanogaster, RBF and dE2F proteins are key regulators of cell proliferation. E2F-protein control results from the functional interplay between activator and repressor complexes. dE2F and RBF proteins have also been linked to the control of re-replication and function in the cellular responses to DNA damage.

  • Mutation of the Caenorhabditis elegans pRB and E2F genes cause developmental defects with limited changes in cell proliferation. C. elegans pRB and E2F complexes repress the expression of developmentally controlled genes and have an important role in maintaining distinct patterns of gene expression in the germline and soma.

  • Genetic studies in C. elegans place pRB and E2F into a large set of genes with a shared function in the formation of the vulva (synMuv B genes).

  • Despite the apparently different uses of pRB and E2F proteins in flies and worms, these proteins share a common molecular mechanism of action that is also preserved in mammalian cells. In each species, pRB and E2F proteins form stable complexes (dREAM/MMB complexes) with orthologues of synMuv B genes.

  • dREAM/MMB complexes function as molecular switches and provide patterns of gene repression that are stable, but also readily reversible. These complexes probably affect some aspect of chromatin structure, but precisely how the switch works is not yet known.

Abstract

Proteins that are related to the retinoblastoma tumour suppressor pRB and the E2F transcription factor are conserved in many species of plants and animals. The mammalian orthologues of pRB and E2F are best known for their roles in cell proliferation, but it has become clear that they affect many biological processes. Here we describe the functions of pRB-related proteins and E2F proteins that have emerged from genetic and biochemical experiments in Caenorhabditis elegans and Drosophila melanogaster. The similarities that have been observed between worms, flies and mammals provide insight into the core activities of pRB and E2F proteins and show how a common regulatory module can control various biological functions in different organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caenorhabditis elegans vulval development.

Similar content being viewed by others

References

  1. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Goodrich, D. W. How the other half lives, the amino-terminal domain of the retinoblastoma tumor suppressor protein. J. Cell Physiol. 197, 169–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Goodrich, D. W. The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene 25, 5233–5243 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bandara, L. R. & La Thangue, N. B. Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351, 494–497 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Chellappan, S. P., Hiebert, S., Mudryj, M., Horowitz, J. M. & Nevins, J. R. The E2F transcription factor is a cellular target for the RB protein. Cell 65, 1053–1061 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Chittenden, T., Livingston, D. M. & Kaelin, W. G. Jr. The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65, 1073–1082 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Girling, R. et al. A new component of the transcription factor DRTF1/E2F. Nature 362, 83–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Ohtani, K. & Nevins, J. R. Functional properties of a Drosophila homolog of the E2F1 gene. Mol. Cell. Biol. 14, 1603–1612 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dynlacht, B. D., Brook, A., Dembski, M., Yenush, L. & Dyson, N. DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc. Natl Acad. Sci. USA 91, 6359–6363 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sawado, T. et al. dE2F2, a novel E2F-family transcription factor in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 251, 409–415 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Du, W., Vidal, M., Xie, J. E. & Dyson, N. RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev. 10, 1206–1218 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Stevaux, O. et al. Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2. EMBO J. 21, 4927–4937 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duronio, R. J. & O'Farrell, P. H. Developmental control of a G1–S transcriptional program in Drosophila. Development 120, 1503–1515 (1994).

    CAS  PubMed  Google Scholar 

  15. Duronio, R. J., O'Farrell, P. H., Xie, J. E., Brook, A. & Dyson, N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455 (1995). This study provided the first evidence that E2F is needed for cell proliferation in an animal model. The results show that eliminating activator E2F proteins has a dramatic effect on gene expression and DNA replication. It is helpful to read this with reference 34, in which de2f1 mutant phenotypes are suppressed by mutation of de2f2.

    Article  CAS  PubMed  Google Scholar 

  16. Royzman, I., Whittaker, A. J. & Orr-Weaver, T. L. Mutations in Drosophila DP and E2F distinguish G1–S progression from an associated transcriptional program. Genes Dev. 11, 1999–2011 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brook, A., Xie, J. E., Du, W. & Dyson, N. Requirements for dE2F function in proliferating cells and in post-mitotic differentiating cells. EMBO J. 15, 3676–3683 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, L. et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Reis, T. & Edgar, B. A. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 117, 253–264 (2004). This study shows a complex interplay between dE2F1 and cyclin E in the regulation of cell-cycle transitions.

    Article  CAS  PubMed  Google Scholar 

  21. Du, W. & Dyson, N. The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. EMBO J. 18, 916–925 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Datar, S. A., Jacobs, H. W., de la Cruz, A. F., Lehner, C. F. & Edgar, B. A. The Drosophila cyclin D–Cdk4 complex promotes cellular growth. EMBO J. 19, 4543–4554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moon, N. S., Di Stefano, L. & Dyson, N. A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Mol. Cell. Biol. 26, 7601–7615 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du, W. Suppression of the rbf null mutants by a de2f1 allele that lacks transactivation domain. Development 127, 367–379 (2000).

    CAS  PubMed  Google Scholar 

  25. Weng, L., Zhu, C., Xu, J. & Du, W. Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J. 22, 3865–3875 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Asano, M., Nevins, J. R. & Wharton, R. P. Ectopic E2F expression induces S phase and apoptosis in Drosophila imaginal discs. Genes Dev. 10, 1422–1432 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Du, W., Xie, J. E. & Dyson, N. Ectopic expression of dE2F and dDP induces cell proliferation and death in the Drosophila eye. EMBO J. 15, 3684–3692 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duronio, R. J., Brook, A., Dyson, N. & O'Farrell, P. H. E2F-induced S phase requires cyclin E. Genes Dev. 10, 2505–2513 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Buttitta, L. A., Katzaroff, A. J., Perez, C. L., de la Cruz, A. & Edgar, B. A. A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila. Dev. Cell 12, 631–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Firth, L. C. & Baker, N. E. Extracellular signals responsible for spatially regulated proliferation in the differentiating Drosophila eye. Dev. Cell 8, 541–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Duman-Scheel, M., Johnston, L. A. & Du, W. Repression of dMyc expression by Wingless promotes Rbf-induced G1 arrest in the presumptive Drosophila wing margin. Proc. Natl Acad. Sci. USA 101, 3857–3862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baonza, A. & Freeman, M. Control of cell proliferation in the Drosophila eye by Notch signaling. Dev. Cell 8, 529–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Frolov, M. V. et al. Functional antagonism between E2F family members. Genes Dev. 15, 2146–2160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dimova, D. K., Stevaux, O., Frolov, M. V. & Dyson, N. J. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev. 17, 2308–2320 (2003). Describes the use of RNAi and microarrays to identify the relative contribution of individual dE2F and RBF proteins to patterns of E2F-dependent transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cayirlioglu, P., Bonnette, P. C., Dickson, M. R. & Duronio, R. J. Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development 128, 5085–5098 (2001).

    CAS  PubMed  Google Scholar 

  37. Duronio, R. J., Bonnette, P. C. & O'Farrell, P. H. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F–DP transcription factor and cyclin E during the G1–S transition. Mol. Cell. Biol. 18, 141–151 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ambrus, A. M., Nicolay, B. N., Rasheva, V. I., Suckling, R. J. & Frolov, M. V. dE2F2-independent rescue of proliferation in cells lacking an activator dE2F1. Mol. Cell. Biol. 27, 8561–8570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rasheva, V. I., Knight, D., Bozko, P., Marsh, K. & Frolov, M. V. Specific role of the SR protein splicing factor B52 in cell cycle control in Drosophila. Mol. Cell. Biol. 26, 3468–3477 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frolov, M. V. et al. G1 cyclin-dependent kinases are insufficient to reverse dE2F2-mediated repression. Genes Dev. 17, 723–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thacker, S. A., Bonnette, P. C. & Duronio, R. J. The contribution of E2F-regulated transcription to Drosophila PCNA gene function. Curr. Biol. 13, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Frolov, M. V., Moon, N. S. & Dyson, N. J. dDP is needed for normal cell proliferation. Mol. Cell. Biol. 25, 3027–3039 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cayirlioglu, P., Ward, W. O., Silver Key, S. C. & Duronio, R. J. Transcriptional repressor functions of Drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells. Mol. Cell. Biol. 23, 2123–2134 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stevaux, O. et al. Retinoblastoma family 2 is required in vivo for the tissue-specific repression of dE2F2 target genes. Cell Cycle 4, 1272–1280 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Ceol, C. J. & Horvitz, H. R. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Mol. Cell 7, 461–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Page, B. D., Guedes, S., Waring, D. & Priess, J. R. The C. elegans E2F- and DP-related proteins are required for embryonic asymmetry and negatively regulate Ras/MAPK signaling. Mol. Cell 7, 451–460 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Lu, X. & Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell 95, 981–991 (1998). This study provided the first molecular understanding of synMuv gene function.

    Article  CAS  PubMed  Google Scholar 

  48. Chi, W. & Reinke, V. Promotion of oogenesis and embryogenesis in the C. elegans gonad by EFL-1/DPL-1 (E2F) does not require LIN-35 (pRB). Development 133, 3147–3157 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kirienko, N. V. & Fay, D. S. Transcriptome profiling of the C. elegans Rb ortholog reveals diverse developmental roles. Dev. Biol. 305, 674–684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sternberg, P. W. Vulval development. WormBook 5, 1–28 (2005).

    Google Scholar 

  51. Fay, D. S. & Yochem, J. The SynMuv genes of Caenorhabditis elegans in vulval development and beyond. Dev. Biol. 306, 1–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferguson, E. L. & Horvitz, H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110, 17–72 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sulston, J. E. & Horvitz, H. R. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev. Biol. 82, 41–55 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435–454 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferguson, E. L. & Horvitz, H. R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics 123, 109–121 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang, L. S., Tzou, P. & Sternberg, P. W. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell 5, 395–411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ceol, C. J. & Horvitz, H. R. A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling. Dev. Cell 6, 563–576 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Cui, M. et al. SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. Dev. Cell 10, 667–672 (2006). Identified transcriptional repression of the EGF-like growth factor gene lin-3 as the critical function of synMuv genes. These results clarified several confusing observations.

    Article  CAS  PubMed  Google Scholar 

  60. Ferguson, E. L., Sternberg, P. W. & Horvitz, H. R. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 326, 259–267 (1987). Together with references 52–55, this provided the solid genetic basis for the pRB and E2F studies in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, J. H. & Horvitz, H. R. The C. elegans gene lin-36 acts cell autonomously in the lin-35 Rb pathway. Development 126, 3449–3459 (1999).

    CAS  PubMed  Google Scholar 

  62. Myers, T. R. & Greenwald, I. lin-35 Rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans. Dev. Cell 8, 117–123 (2005). Demonstrated that a non-cell autonomous function of lin-35 Rb in the general epidermis is critical for normal regulation of the vulval cell fate.

    Article  CAS  PubMed  Google Scholar 

  63. Dufourcq, P. et al. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. Mol. Cell. Biol. 22, 3024–3034 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Poulin, G., Dong, Y., Fraser, A. G., Hopper, N. A. & Ahringer, J. Chromatin regulation and sumoylation in the inhibition of Ras-induced vulval development in Caenorhabditis elegans. EMBO J. 24, 2613–2623 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Unhavaithaya, Y. et al. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline–soma distinctions in C. elegans. Cell 111, 991–1002 (2002). Demonstrated that a NuRD complex antagonizes polycomb gene function and germline-specific transcription in the soma.

    Article  CAS  PubMed  Google Scholar 

  66. Hsieh, J. et al. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes Dev. 13, 2958–2970 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146, 227–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Batchelder, C. et al. Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev. 13, 202–212 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296, 2235–2238 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bender, L. B. et al. MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133, 3907–3917 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Kelly, W. G. & Fire, A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456 (1998).

    CAS  PubMed  Google Scholar 

  75. Lehner, B. et al. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome Biol. 7, R4 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 19, 683–696 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, J. K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164–1167 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Cui, M., Kim, E. B. & Han, M. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet. 2, e74 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andersen, E. C., Lu, X. & Horvitz, H. R. C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates. Development 133, 2695–2704 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Wildwater, M. et al. The retinoblastoma-related gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Fay, D. S., Large, E., Han, M. & Darland, M. lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development 130, 3319–3330 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Fay, D. S. et al. The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Dev. Biol. 271, 11–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Cui, M., Fay, D. S. & Han, M. lin-35/Rb cooperates with the SWI/SNF complex to control Caenorhabditis elegans larval development. Genetics 167, 1177–1185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chesney, M. A., Kidd, A. R., 3rd & Kimble, J. gon-14 functions with class B and class C synthetic multivulva genes to control larval growth in Caenorhabditis elegans. Genetics 172, 915–928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bender, A. M., Wells, O. & Fay, D. S. lin-35/Rb and xnp-1/ATR-X function redundantly to control somatic gonad development in C. elegans. Dev. Biol. 273, 335–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Cardoso, C. et al. XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Dev. Biol. 278, 49–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Ceron, J. et al. Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev. Biol. 7, 30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reddy, K. C. & Villeneuve, A. M. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118, 439–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Wu, L. et al. Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Phillips, A. C. & Vousden, K. H. E2F-1 induced apoptosis. Apoptosis 6, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Pediconi, N. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nature Cell Biol. 5, 552–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Iaquinta, P. J. & Lees, J. A. Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol. 19, 649–657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. MacPherson, D. et al. Cell type-specific effects of Rb deletion in the murine retina. Genes Dev. 18, 1681–1694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, J. et al. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nature Genet. 36, 351–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, J., Schweers, B. & Dyer, M. A. The first knockout mouse model of retinoblastoma. Cell Cycle 3, 952–959 (2004).

    CAS  PubMed  Google Scholar 

  99. Chen, D. et al. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5, 539–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Levine, A. J. Tumor suppressor genes. Bioessays 12, 60–66 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Williams, B. O. et al. Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genet. 7, 480–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Reddien, P. W., Andersen, E. C., Huang, M. C. & Horvitz, H. R. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans. Genetics 175, 1719–1733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schertel, C. & Conradt, B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development 134, 3691–3701 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Royzman, I. et al. The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech. Dev. 119, 225–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Zhou, L. & Steller, H. Distinct pathways mediate UV-induced apoptosis in Drosophila embryos. Dev. Cell 4, 599–605 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Moon, N. S. et al. Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development. Dev. Cell 9, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. DeGregori, J. E2F and cell survival: context really is key. Dev. Cell 9, 442–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hallstrom, T. C. & Nevins, J. R. Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc. Natl Acad. Sci. USA 100, 10848–10853 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ginsberg, D. EGFR signaling inhibits E2F1-induced apoptosis in vivo: implications for cancer therapy. Sci. STKE 2007, pe4 (2007).

  113. Hallstrom, T. C., Mori, S. & Nevins, J. R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13, 11–22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morris, E. J. et al. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet. 2, e196 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Morris, E. J. et al. E2F represses β-catenin transcription and is antagonized by both pRB and CDK-8. Nature (in the press).

  116. Royzman, I., Austin, R. J., Bosco, G., Bell, S. P. & Orr-Weaver, T. L. ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev. 13, 827–840 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bosco, G., Du, W. & Orr-Weaver, T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nature Cell Biol. 3, 289–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Spradling, A. & Orr-Weaver, T. Regulation of DNA replication during Drosophila development. Annu. Rev. Genet. 21, 373–403 (1987).

    Article  CAS  PubMed  Google Scholar 

  119. Orr-Weaver, T. L. Drosophila chorion genes: cracking the eggshell's secrets. Bioessays 13, 97–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Royzman, I. & Orr-Weaver, T. L. S. phase and differential DNA replication during Drosophila oogenesis. Genes Cells 3, 767–776 (1998).

    CAS  Google Scholar 

  121. Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Hartl, T., Boswell, C., Orr-Weaver, T. L. & Bosco, G. Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation. Chromosoma 116, 197–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Beall, E. L., Bell, M., Georlette, D. & Botchan, M. R. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev. 18, 1667–1680 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Beall, E. L. et al. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-MuvB. Genes Dev. 21, 904–919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Korenjak, M. et al. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119, 181–193 (2004). This paper and reference 127 describe the purification of the dREAM and MMB complexes and the discovery that the native RB–E2F repressor complex contains orthologues of C. elegans synMuv class B proteins.

    Article  CAS  PubMed  Google Scholar 

  127. Lewis, P. W. et al. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev. 18, 2929–2940 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Harrison, M. M., Ceol, C. J., Lu, X. & Horvitz, H. R. Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proc. Natl Acad. Sci. USA 103, 16782–16787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Litovchick, L. et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol. Cell 26, 539–551 (2007). Isolation and functional characterization of mammalian dREAM/MMB complexes. This paper is especially interesting when read together with reference 133.

    Article  CAS  PubMed  Google Scholar 

  130. Pilkinton, M., Sandoval, R. & Colamonici, O. R. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene 26, 7535–7543 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Schmit, F. et al. LINC, a human complex that is related to pRB-containing complexes in invertebrates regulates the expression of G2/M genes. Cell Cycle 6, 1903–1913 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Taylor-Harding, B., Binne, U. K., Korenjak, M., Brehm, A. & Dyson, N. J. p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol. Cell. Biol. 24, 9124–9136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Georlette, D. et al. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev. 21, 2880–2896 (2007). Uses genomic approaches to give a detailed picture of the distribution and activity of the Drosophila dREAM and MMB complexes. This paper is especially interesting when read together with reference 129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lu, J., Ruhf, M. L., Perrimon, N. & Leder, P. A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proc. Natl Acad. Sci. USA 104, 9381–9386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Harrison, M. M., Lu, X. & Horvitz, H. R. LIN-61, one of two Caenorhabditis elegans malignant-brain-tumor-repeat-containing proteins, acts with the DRM and NuRD-like protein complexes in vulval development but not in certain other biological processes. Genetics 176, 255–271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Trojer, P. et al. L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129, 915–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Longworth, M. S., Herr, A., Ji, J. Y. & Dyson, N. J. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. (2008).

  138. Manak, J. R., Mitiku, N. & Lipsick, J. S. Mutation of the Drosophila homologue of the Myb protooncogene causes genomic instability. Proc. Natl Acad. Sci. USA 99, 7438–7443 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Manak, J. R., Wen, H., Van, T., Andrejka, L. & Lipsick, J. S. Loss of Drosophila Myb interrupts the progression of chromosome condensation. Nature Cell Biol. 9, 581–587 (2007).

    Article  PubMed  Google Scholar 

  140. Wen, H., Andrejka, L., Ashton, J., Karess, R. & Lipsick, J. S. Epigenetic regulation of gene expression by Drosophila Myb and E2F2-RBF via the Myb-MuvB/dREAM complex. Genes Dev. 22, 601–614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tilmann, C. & Kimble, J. Cyclin D regulation of a sexually dimorphic asymmetric cell division. Dev. Cell 9, 489–499 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andersen, E. C. & Horvitz, H. R. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 134, 2991–2999 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Coustham, V. et al. The C. elegans HP1 homologue HPL-2 and the LIN-13 zinc finger protein form a complex implicated in vulval development. Dev. Biol. 297, 308–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Couteau, F., Guerry, F., Muller, F. & Palladino, F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep. 3, 235–241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hassler, M. et al. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol. Cell 28, 371–385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Slansky, J. E. & Farnham, P. J. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol Immunol. 208, 1–30 (1996).

    CAS  PubMed  Google Scholar 

  147. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Nevins, J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585–593 (1998).

    CAS  PubMed  Google Scholar 

  150. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    Article  CAS  Google Scholar 

  151. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 24, 2796–2809 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Johnson, D. G. & Degregori, J. Putting the oncogenic and tumor suppressive activities of E2F into context. Curr. Mol. Med. 6, 731–738 (2006).

    CAS  PubMed  Google Scholar 

  154. DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  155. Dick, F. A. Structure–function analysis of the retinoblastoma tumor suppressor protein — is the whole a sum of its parts? Cell Div. 2, 26 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Keller, S. A., Ullah, Z., Buckley, M. S., Henry, R. W. & Arnosti, D. N. Distinct developmental expression of Drosophila retinoblastoma factors. Gene Expr. Patterns 5, 411–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. O'Farrell, P. H., Edgar, B. A., Lakich, D. & Lehner, C. F. Directing cell division during development. Science 246, 635–640 (1989).

    Article  CAS  PubMed  Google Scholar 

  158. Edgar, B. A. & Lehner, C. F. Developmental control of cell cycle regulators: a fly's perspective. Science 274, 1646–1652 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Edgar, B. A. & O'Farrell, P. H. The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62, 469–480 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Edgar, B. A., Sprenger, F., Duronio, R. J., Leopold, P. & O'Farrell, P. H. Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev. 8, 440–452 (1994).

    Article  CAS  PubMed  Google Scholar 

  161. Shibutani, S., Swanhart, L. M. & Duronio, R. J. Rbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis. Development 134, 467–478 (2007).

    CAS  Google Scholar 

  162. Heriche, J. K., Ang, D., Bier, E. & O'Farrell, P. H. Involvement of an SCFSlmb complex in timely elimination of E2F upon initiation of DNA replication in Drosophila. BMC Genet. 4, 9 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Arias, E. E. & Walter, J. C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature Cell Biol. 8, 84–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Koreth, J. & van den Heuvel, S. Cell-cycle control in Caenorhabditis elegans: how the worm moves from G1 to S. Oncogene 24, 2756–2764 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Grishok, A. & Sharp, P. A. Negative regulation of nuclear divisions in Caenorhabditis elegans by retinoblastoma and RNA interference-related genes. Proc. Natl Acad. Sci. USA 102, 17360–17365 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ouellet, J. & Roy. R. The lin-35/Rb and RNAi pathways cooperate to regulate a key cell cycle transition in C. elegans. BMC Dev. Biol. 7, 38 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Saito, R. M., Perreault, A., Peach, B., Satterlee, J. S. & van den Heuvel, S. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nature Cell Biol. 6, 777–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Boxem, M. & van den Heuvel, S. lin-35 Rb and cki-1 Cip/Kip cooperate in developmental regulation of G1 progression in C. elegans. Development 128, 4349–4359 (2001). First demonstration of redundant G1 control mechanisms in C. elegans , which include a conserved CDK4/6–cyclin D–pRB–E2F pathway.

    CAS  PubMed  Google Scholar 

  169. Park, M. & Krause, M. W. Regulation of postembryonic G1 cell cycle progression in Caenorhabditis elegans by a cyclin D/CDK-like complex. Development 126, 4849–4860 (1999).

    CAS  PubMed  Google Scholar 

  170. Boxem, M. & van den Heuvel, S. C. elegans class B synthetic multivulva genes act in G1 regulation. Curr. Biol. 12, 906–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Fay, D. S., Keenan, S. & Han, M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev. 16, 503–517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Fay, B. Duronio, M. Frolov and members of our laboratories for their comments and I. The for help with the figures. Because of the length restrictions we were unable to cover several important topics and we apologize to colleagues for studies that could not be described in full detail. The research in our laboratories was funded by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez-Gene

dacapo

lin-8

lin-9

lin-35

mus209

UniProtKB

DP

DPL-1

E2F1

E2F2

EFL-1

RBF1

RBF2

FURTHER INFORMATION

Sander van den Heuvel's homepage

Nicholas Dyson's homepage

SUPPLEMENTARY INFORMATION

See online article

S1 (box)

Glossary

Mosaic animal

An animal with genetically distinct populations of cells that arose from a single zygote.

Polycomb group

(PcG).Proteins that form several multiprotein complexes that mediate stable repression of gene expression over multiple cell generations, in association with histone H3 Lys27 methylation.

Wing imaginal disc

A sheet of cells that are the precursors to the adult wing.

Wing margin

The outer edge of the adult wing.

Endoreduplication

Repeated rounds of DNA synthesis without ensuing mitosis and cell division.

DEAD-box protein

A member of a family of proteins that are characterized by the presence of nine conserved sequence motifs. Several members of this family are RNA helicases with ATPase activity.

RbAp48

(pRB-associated protein p48). A subunit of multiple histone modification complexes and chromatin-remodelling complexes that can interact with histones H3 and H4.

Histone deacytylase

A class of enzymes that remove the acetyl groups of Lys residues on histones. The HDAC1/RPD3 family form part of multisubunit nuclear complexes with key roles in eukaryotic gene expression.

SET domain

A domain that is present in proteins that transfer methyl groups to substrate Lys residues, found in nearly all histone Lys methyltransferases (HMTs).

Eye imaginal disc

A sheet of cells that are the precursors to the adult eye.

Chorion gene clusters

Genome regions that are amplified in follicle cells and contain genes that are needed for the formation of the eggshell.

NuRD

Nucleosome remodeling and deacytylase complex. A complex that combines histone deacetylation and chromatin remodelling ATPase activities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Heuvel, S., Dyson, N. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9, 713–724 (2008). https://doi.org/10.1038/nrm2469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2469

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing